985 resultados para Observatory
Resumo:
We report the discovery of WASP-4b, a large transiting gas-giant planet with an orbital period of 1.34 days. This is the first planet to be discovered by the SuperWASP-South observatory and CORALIE collaboration and the first planet orbiting a star brighter than 16th magnitude to be discovered in the southern hemisphere. A simultaneous fit to high-quality light curves and precision radial velocity measurements leads to a planetary mass of 1.22(-0.08)(+0.09) M-Jup and a planetary radius of 1.42(-0.04)(+0.07) R-Jup. The host star is USNO-B1.0 0479-0948995, a G7 V star of visual magnitude 12.5. As a result of the short orbital period, the predicted surface temperature of the planet is 1761 K, making it an ideal candidate for detections of the secondary eclipse at infrared wavelengths.
Resumo:
We present Ca it K and Ti it optical spectra of early-type stars taken mainly from the ultraviolet and visual echelle spectrograph (LIVES) Paranal Observatory Project, plus H 1 21-cm spectra, from the Vila-Elisa and Leiden-Dwingeloo Surveys, which are employed to obtain distances to intermediate- and high-velocity clouds (IHVCs). H I emission at a velocity of -117 km s(-1) towards the sightline HD 30677 (l, b = 190 degrees.2, -22 degrees.2) with column density -1.7 x 10(19) cm(-2) has no corresponding Ca Pi K absorption in the LIVES spectrum, which has a signal-to-noise ratio (S/N) of 610 per resolution element. The star has a spectroscopically determined distance of 2.7 kpc, and hence sets this as a firm lower distance limit towards Anti-Centre cloud ACII. Towards another sightline (HD 46185 with 1, b = 222 0, -10 degrees.1), H1 at a velocity of +122 km s(-1) and column density of 1.2 x 10(19) cm(-2) is seen. The corresponding Ca Pi K spectrum has a S/N of 780, although no absorption is observed at the cloud velocity. This similarly places a firm lower distance limit of 2.9 kpc towards this parcel of gas that may be an intermediate-velocity (IV) cloud. The lack of IV Ca it absorption towards HD 196426 (1, b = 45 degrees.8, -23 degrees.3) at a S/N of 500 reinforces a lower distance limit of -700 pc towards this part of complex gp, where the H I column density is 1.1 x 1019 cm(-2) and velocity is +78 km s(-1). Additionally, no IV Cart is seen in absorption in the spectrum of HD 19445, which is strong in H I with a column density of 8 x 10(19) cm(-2) at a velocity of - -42 km s(-1), placing a firm although uninteresting lower distance limit of 39 pc to this part of IV South. Finally, no high-velocity Call K absorption is seen towards HD 115363 (l, b = 306.0,-1.0) at a S/N of 410, placing a lower distance of -3.2 kpc towards the HVC gas at velocity of - +224 km s(-1) and WE column density of 5.2 x 10(19) cm(-2). This gas is in the same region of the sky as complex WE (Wakker 2001), but at higher velocities. The non-detection of Ca it K absorption sets a lower distance of -3.2 kpc towards the HVC, which is unsurprising if this feature is indeed related to the Magellanic System.
Resumo:
Two sequences of solar images obtained by the Transition Region and Coronal Explorer in three UV passbands are studied using wavelet and Fourier analysis and compared to the photospheric magnetic flux measured by the Michelson Doppler Interferometer on the Solar Heliospheric Observatory to study wave behavior in differing magnetic environments. Wavelet periods show deviations from the theoretical cutoff value and are interpreted in terms of inclined fields. The variation of wave speeds indicates that a transition from dominant fast-magnetoacoustic waves to slow modes is observed when moving from network into plages and umbrae. This implies preferential transmission of slow modes into the upper atmosphere, where they may lead to heating or be detected in coronal loops and plumes.
Resumo:
A detailed study is presented of the decaying solar-active region NOAA 10103 observed with the Coronal Diagnostic Spectrometer (CDS), the Michelson Doppler Imager (MDI) and the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Electron-density maps formed using Si x (356.03 angstrom/347.41 angstrom) show that the density varies from similar to 10(10) cm(-3) in the active-region core to similar to 7 x 108 cm-3 at the region boundaries. Over the 5 d of observations, the average electron density fell by similar to 30 per cent. Temperature maps formed using Fe XVI (335.41 angstrom)/Fe XIV (334.18 angstrom) show electron temperatures of similar to 2.34 x 10(6) K in the active-region core and similar to 2.10 x 10(6) K at the region boundaries. Similarly to the electron density, there was a small decrease in the average electron temperature over the 5-d period. The radiative, conductive and mass-flow losses were calculated and used to determine the resultant heating rate (P-H). Radiative losses were found to dominate the active-region cooling process. As the region decayed, the heating rate decreased by almost a factor of 5 between the first and last day of observations. The heating rate was then compared to the total unsigned magnetic flux (Phi(tot) = integral dA vertical bar B-z vertical bar), yielding a power law of the form P-H similar to Phi(0.81 +/- 0.32)(tot) This result suggests that waves rather than nanoflares may be the dominant heating mechanism in this active region.
Resumo:
The new pedagogical framework arisen since the Bologna Declaration,the Prague Communiquéand the introduction of the European Higher Education Area (EHEA), encourages, significantly, the use of new Communication and Information Technology to evolve teaching methodologies. The different ways teachers relate to learners have undergone a staggering change from which educational initiatives have emerged. Many of them are based on contents’ democratization through the use of ICT. The current article is intended to show the results obtained until the 2012/2013 academic course, since the implementation of the teaching innovation project entitled “The use of ICT for the students’ autonomous learning in the university education of the course Photography. Elaboration of a virtual classroom and results’ analysis related to the acquisition of skills and competencies” that has been developed in the course called Draw with light: Photography, belonging to the Fine Arts Degree at the University of Murcia.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å.
Resumo:
Detection of Li-6 has been shown for energetic solar events, one chromospherically active binary, and several dwarf halo stars. We had previously found a Li-6/Li-7 = 0.03 +/- 0.01 for active K dwarf GJ 117 using VLT UVES observations. Here we present high signal-to-noise (> 1000) high spectral resolution observations taken with the McDonald Observatory's 2.7 m and echelle spectrometer of GJ 117. We have used the solar spectrum and template stars to eliminate possible blends, such as Ti I, in the Li-6 spectral region. Our new analysis, using an updated PHOENIX model atmosphere, finds Li-6/Li-7 = 0.05 +/- 0.02. In addition, bisector analysis showed no significant red asymmetries that would affect the lithium line profile. No changes above the statistical uncertainties are found between the VLT and McDonald data. The amount of Li-6 derived for GJ 117 is consistent with creation in spallation reactions on the stellar surface, but we caution that uncertainties in the continuum level may cause additional uncertainty in the Li-6 fraction.
Resumo:
We present the first detailed spatio-kinematical analysis and modelling of the southern planetary nebula SuWt 2. This object presents a problem for current theories of planetary nebula formation and evolution, as it is not known to contain a central post-main-sequence star. Deep narrow-band [NII]6584Å images reveal the presence of faint bipolar lobes emanating from the edges of the nebular ring. Long-slit observations of the Ha and [NII]6584Å emission lines were obtained using the ESO (European Southern Observatory) Multi-Mode Instrument on the 3.6-m ESO New Technology Telescope. The spectra reveal the nebular morphology as a bright torus encircling the waist of an extended bipolar structure. By deprojection, the inclination of the ring is found to be 68° +/- 2° (cf. ~90° for the double A-type binary believed to lie at the centre of the nebula), and the ring expansion velocity is found to be 28 kms-1. Our findings are discussed with relation to possible formation scenarios for SuWt 2. Through comparison of the nebular heliocentric systemic velocity, found here to be -25 +/- 5km s-1, and the heliocentric systemic velocity of the double A-type binary, we conclude that neither component of the binary could have been the nebular progenitor. However, we are unable to rule out the presence of a third component to the system, which would have been the nebula progenitor.
Resumo:
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93-m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (?) is small and consistent with zero within . WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6+2.2-2.1kms-1) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5kms-1). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7+1.4-1.3kms-1).
Resumo:
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 -aEuro parts per thousand 15 e s(-1) pixel(-1)), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.
Resumo:
The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.
Resumo:
We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.48 Jupiter masses and 1.55 Jupiter radii. It is in a 3.4-day orbit around a metal-poor, late-F-type, V = 11.7 dwarf star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. Based in part on observations made with the HARPS spectrograph on the 3.6-m ESO telescope (proposal 085.C-0393) and with the CORALIE spectrograph and the Euler camera on the 1.2-m Euler Swiss telescope, both at the ESO La Silla Observatory, Chile.The photometric time-series and radial-velocity data used in this work are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A60
Resumo:
Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01: 44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-free continuum (6.5-37 nm). The He II 30.4 nm and Ly alpha 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components.
Resumo:
Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 104 and 107 K, including transitions from highly ionized iron (gsim10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 1011.2-1012.1 cm–3 were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.