939 resultados para OCEANIC WATERS
Resumo:
This paper presents chlorine stable isotope compositions (delta37Cl) of sediment pore waters collected by squeezing sediment cores from the sediment-basement interface along an East-West transect through the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). These "near basement fluids" (NBF) are generally thought to be representative of low-temperature fluids circulating in the off-axis basaltic crust. The delta37Cl value of the fluid directly sampled from a flow at the base of Site 1026 (WSTP1026) is also reported. NBF display delta37Cl values between -2.09? and -0.12? relative to the Standard Mean Ocean Chloride (SMOC defined as 0?) and small variations in chlorinity (~4%). These data contrast with the homogeneity of delta37Cl values associated with highly variable chlorinities observed in high-temperature on-axis fluids [Bonifacie et al., 2005, doi:10.1016/j.chemgeo.2005.06.008]. The NBF delta37Cl values show a general decreasing trend with distance from the ridge-axis except for two fluids. When plotted against delta18O values, the delta37Cl of the NBF show two different trends. This paper discusses the possible contributions on NBF delta37Cl values of fluid-mixing, water-rock interactions and transport processes (diffusion, ion membrane filtration) that can occur in the igneous basement. However, as none of these processes can fully explain the observed delta37Cl variations, the potential effect of the sediment cover is also investigated. At site 1026, the interstitial pore fluid displays a delta37Cl signature significantly lower than that of the fluid discharge sample (-1.90? and -0.28?, respectively). This difference, demonstrated here cannot be an artifact of the sampling method, rather indicates the influence of the sediment cover on NBF delta37Cl values. The potential contributions of physical processes associated with transport/compaction (e.g., diffusion, ion membrane filtration, adsorption, ion exchange) on NBF delta37Cl values are qualitatively discussed here but require additional studies for further insights. However, this study indicates that "near basement fluids" (NBF) are not, at least for Cl isotopic compositions, necessarily as representative of fluids circulating in the basaltic crust as initially thought. These results add new constraints on Cl geodynamics and show that Cl-isotopes fractionate during low-temperature circulation of fluids in off-axis and off-margin flow contexts, but not to the extent observed for active margins. Fluids circulating at low-temperature in the magmatic and/or the sedimentary part of the oceanic crust might have played a major role on the delta37Cl evolution of seawater over geologic time.
Resumo:
The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.
Resumo:
Boundary scavenging, or the enhanced removal of adsorption-prone elements from the ocean in areas of high particle flux, is an often cited, though not well-quantified, concept used to understand the oceanic distribution of many trace metals. Because 230Th and 231Pa are produced uniformly from uranium decay and removed differentially by scavenging, the process of boundary scavenging can be elucidated by a more detailed knowledge of their water column distributions. To this end, filtered seawater was collected across the gradients in particle flux which span the subarctic Pacific: in the west during the Innovative North Pacific Experiment (INOPEX) and in the east along Line P. Lateral concentration gradients of dissolved 230Th are small throughout the subarctic Pacific at 12 sites of variable particle flux. This contradicts the prediction of the traditional boundary scavenging model. A compilation of water column data from throughout the North Pacific reveals much larger lateral concentration gradients for 230Th between the subarctic North Pacific and subtropical gyre, over lateral gradients in scavenging intensity similar to those found within the subarctic. This reflects a biogeochemical-province aspect to scavenging. Upper water column distributions of 231Pa and 231Pa/230Th ratio are consistent with the influence of scavenging by biogenic opal, while deep waters (>2.5 km) reveal an additional 231Pa sink possibly related to manganese oxides produced at continental margins or ridge crests.
Resumo:
This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).
Resumo:
Total organic carbon, amino compounds, and carbohydrates were measured in pore waters and sediments of Pliocene to Pleistocene age from Sites 723 and 724 (ODP Leg 117) to evaluate (1) relationships between organic matter in the sediment and in the pore water, (2) the imprint of lithological variations on the abundance and contribution of organic substances, (3) degradation of amino compounds and carbohydrates with time and/or depth, and (4) the dependence of the ammonia concentration in the pore water on the degradation of amino compounds in the sediment. Total organic carbon concentrations (TOC) of the investigated sediment samples range from 0.9% to 8.7%, and total nitrogen concentrations (TN) from 0.1% to 0.5%. Up to 4.9% of the TOC is contributed by hydrolyzable amino acids (THAA) which are present in amounts between 1.1 and 21.3 µmol/g dry sediment and decrease strongly downhole. Hydrolyzable carbohydrates (THCHO) were found in concentrations from 1.3 to 6.6 ?mol/g sediment constituting between 0.1% and 2.0% of the TOC. Differences between the distribution patterns of monomers in Sites 723 and 724 indicate higher terrigenous influence for Site 724 and, furthermore, enhanced input of organic matter that is relatively resistant to microbial degradation. Lithologically distinct facies close to the Pliocene/Pleistocene boundary yield different organic matter compositions. Laminated horizons seem to correspond with enhanced amounts of biogenic siliceous material and minor microbiological degradation. Total amounts of dissolved organic carbon (DOC) in pore waters vary between 11 and 131 mg/L. Concentrations of DOC as well as of dissolved amino compounds and carbohydrates appear to be related to microbial activity and/or associated redox zones and not so much to the abundance of organic matter in the sediments. Distributions of amino acids and monosaccharides in pore waters show a general enrichment in relatively stable components in comparison to those of the sediments. Nevertheless, the same trend appears between amino acids present in the sediments from Sites 723 and 724 as well as between amino acids in pore waters from these two sites, indicating a direct relation between the dissolved and the sedimentary organic fractions. Different ammonia concentrations in the pore waters of Sites 723 and 724 seem to be related to enhanced release of ammonia from degradation of amino compounds in Site 723.
Resumo:
Interaction between young basaltic crust and seawater near the oceanic speading centers is one of the important processes affecting the chemical composition of the oceanic layer. The formation of metalliferous hydrothermal sediments results from this interaction. The importance of the interaction between seawater and basalt in determining the chemical composition of pore waters from sediments is well known. The influence of mineral solutions derived from this interaction on ocean water composition and the significant flux of some elements (e.g., Mn) are reported by Lyle (1976), Bogdanov et al. (1979), and others. Metal-rich sediments found in active zones of the ocean basins illustrate the influence of seawater-basalt interaction and its effect on the sedimentary cover in such areas. The role of hydrothermal activity and seawater circulation in basalts with regard to global geochemistry cycles has recently been demonstrated by Edmond, Measures, McDuff, McDuff et al. (1979), and Edmond, Measures, Mangum (1979). In the area of the Galapagos Spreading Center the interaction of sediments and solutions derived from interaction of seawater and basalt has resulted in the formation of hydrothermal mounds. The mounds are composed of manganese crusts and green clay interbedded and mixed with pelagic nannofossil ooze. These mounds are observed only in areas characterized by high heat flow (Honnorez, et al., 1981) and high hydrothermal activity.
Resumo:
A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measurements, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. Anelastic strain recovery is a relatively new technique. Because use of the method has extended to a wider range of rock types, the literature has begun to include examples of rocks that contracted with time. Strong circumstantial evidence exists to suggest that core-sample contractions result from the slow diffusion of pore fluids from a preexisting microcrack structure that permits the rock to deflate at a greater rate than the expansion caused by anelastic strain recovery. Both expansions and contractions of the Leg 123 cores were observed. The basalt cores have clearly been intersected by an abundance of preexisting fractures, some of which pass right through the samples, but many are intercepted or terminate within the rock matrix. Thus, the behavior of the core samples will be influenced not only by the properties of the rock matrix between the fractures, but also by how these macro- and micro-scale fractures mutually interact. The strain-recovery curves recorded during Leg 123 for each of the 15 basalt core samples may reflect the result of two competing time dependent processes: anelastic strain recovery and pore pressure recovery. Were these the only two processes to influence the gauge responses, then one might expect that given the additional information required, established theoretical models might be used to determine consistent stress orientations and reliable stress magnitudes. However, superimposed upon these competing processes is their respective interaction with the preexisting fractures that intersect each core. Evidence from our experiments and observations suggests that these fractures have a dominating influence on the characteristics of the recovery curves and that their effects are complex.