825 resultados para Nylon Fiber Composite
Resumo:
Composite flooring systems supported by tapered (varying web depth) beams are very attractive from an economic point of view. However, the tapered beam sections are fabricated from plate by welding, and are susceptible to imperfection effects. These may interact with the localised compressive stress field that is generated in the web at a slope change in the lower flange to cause local web buckling. A substantial parametric study using a non-linear elasto-plastic finite element program and covering practical ranges of the important parameters including the area of the tension flange, taper slope and web thickness is reported. Moment-rotation relations, peak moments and failure mechanisms have been predicted. The validity of the work is supported by the good correlation obtained between the results of the parametric study and experimental data.
Resumo:
The present thesis discusses the coherence or lack of coherence in the book of Numbers, with special regard to its narrative features. The fragmented nature of Numbers is a well-known problem in research on the book, affecting how we approach and interpret it, but to date there has not been any thorough investigation of the narrative features of the work and how they might contribute to the coherence or the lack of coherence in the book. The discussion is pursued in light of narrative theory, and especially in connection to three parameters that are typically understood to be invoked in the interpretation of narratives: 1) a narrative paradigm, or ‘story,’ meaning events related to each other temporally, causally, and thematically, in a plot with a beginning, middle, and end; 2) discourse, being the expression plane of a narrative, or the devices that an author has at hand in constructing a narrative; 3) the situation or languagegame of the narrative, prototypical examples being factual reports, which seeks to depict a state of affairs, and storytelling narratives, driven by a demand for tellability. In view of these parameters the present thesis argues that it is reasonable to form four groups to describe the narrative material of Numbers: genuine narratives (e.g. Num 12), independent narrative sequences (e.g. Num 5:1-4), instrumental scenes and situations (e.g. Num 27:1-5), and narrative fragments (e.g. Num 18:1). These groups are mixed throughout with non-narrative materials. Seen together, however, the narrative features of these groups can be understood to create an attenuated narrative sequence from beginning to end in Numbers, where one thing happens after another. This sequence, termed the ‘larger story’ of Numbers, concerns the wandering of Israel from Sinai to Moab. Furthermore, the larger story has a fragmented plot. The end-point is fixed on the promised land, Israel prepares for the wandering towards it (Num 1-10), rebels against wandering and the promise and is sent back into the wilderness (Num 13-14), returns again after forty years (Num 21ff.), and prepares for conquering the land (Num 22-36). Finally, themes of the promised land, generational succession, and obedience-disobedience, operate in this larger story. Purity is also a significant theme in the book, albeit not connected to plot in the larger story. All in all, sequence, plot, and theme in the larger story of Numbers can be understood to bring some coherence to the book. However, neither aspect entirely subsumes the whole book, and the four groups of narrative materials can also be understood to underscore the incoherence of the work in differentiating its variegated narrative contents. Numbers should therefore be described as an anthology of different materials that are loosely connected through its narrative features in the larger story, with the aim of informing Israelite identity by depicting a certain period in the early history of the people.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
A web service is a software system that provides a machine-processable interface to the other machines over the network using different Internet protocols. They are being increasingly used in the industry in order to automate different tasks and offer services to a wider audience. The REST architectural style aims at producing scalable and extensible web services using technologies that play well with the existing tools and infrastructure of the web. It provides a uniform set of operation that can be used to invoke a CRUD interface (create, retrieve, update and delete) of a web service. The stateless behavior of the service interface requires that every request to a resource is independent of the previous ones facilitating scalability. Automated systems, e.g., hotel reservation systems, provide advanced scenarios for stateful services that require a certain sequence of requests that must be followed in order to fulfill the service goals. Designing and developing such services for advanced scenarios with REST constraints require rigorous approaches that are capable of creating web services that can be trusted for their behavior. Systems that can be trusted for their behavior can be termed as dependable systems. This thesis presents an integrated design, analysis and validation approach that facilitates the service developer to create dependable and stateful REST web services. The main contribution of this thesis is that we provide a novel model-driven methodology to design behavioral REST web service interfaces and their compositions. The behavioral interfaces provide information on what methods can be invoked on a service and the pre- and post-conditions of these methods. The methodology uses Unified Modeling Language (UML), as the modeling language, which has a wide user base and has mature tools that are continuously evolving. We have used UML class diagram and UML state machine diagram with additional design constraints to provide resource and behavioral models, respectively, for designing REST web service interfaces. These service design models serve as a specification document and the information presented in them have manifold applications. The service design models also contain information about the time and domain requirements of the service that can help in requirement traceability which is an important part of our approach. Requirement traceability helps in capturing faults in the design models and other elements of software development environment by tracing back and forth the unfulfilled requirements of the service. The information about service actors is also included in the design models which is required for authenticating the service requests by authorized actors since not all types of users have access to all the resources. In addition, following our design approach, the service developer can ensure that the designed web service interfaces will be REST compliant. The second contribution of this thesis is consistency analysis of the behavioral REST interfaces. To overcome the inconsistency problem and design errors in our service models, we have used semantic technologies. The REST interfaces are represented in web ontology language, OWL2, that can be part of the semantic web. These interfaces are used with OWL 2 reasoners to check unsatisfiable concepts which result in implementations that fail. This work is fully automated thanks to the implemented translation tool and the existing OWL 2 reasoners. The third contribution of this thesis is the verification and validation of REST web services. We have used model checking techniques with UPPAAL model checker for this purpose. The timed automata of UML based service design models are generated with our transformation tool that are verified for their basic characteristics like deadlock freedom, liveness, reachability and safety. The implementation of a web service is tested using a black-box testing approach. Test cases are generated from the UPPAAL timed automata and using the online testing tool, UPPAAL TRON, the service implementation is validated at runtime against its specifications. Requirement traceability is also addressed in our validation approach with which we can see what service goals are met and trace back the unfulfilled service goals to detect the faults in the design models. A final contribution of the thesis is an implementation of behavioral REST interfaces and service monitors from the service design models. The partial code generation tool creates code skeletons of REST web services with method pre and post-conditions. The preconditions of methods constrain the user to invoke the stateful REST service under the right conditions and the post condition constraint the service developer to implement the right functionality. The details of the methods can be manually inserted by the developer as required. We do not target complete automation because we focus only on the interface aspects of the web service. The applicability of the approach is demonstrated with a pedagogical example of a hotel room booking service and a relatively complex worked example of holiday booking service taken from the industrial context. The former example presents a simple explanation of the approach and the later worked example shows how stateful and timed web services offering complex scenarios and involving other web services can be constructed using our approach.
Resumo:
Cellulose fiber-silica nanocomposites with novel mechanical, chemical and thermal properties have potential to be widely applied in different area. Monodispered silica nanoparticles play an important role in enhancing hybrids properties of hardness, strength, thermal stability etc. On the other hand, cellulose is one of the world’s most abundant and renewable polymers and possesses several unique properties required in many areas and biomedicine. The aim of this master thesis is to study if silica particles from reaction of sodium silicate and sulphuric acid can be adsorbed onto cellulose fiber surfaces via in situ growth. First, nanosilica particles were synthesized. Effect of pH and silica contents were tested. In theoretical part, introduction of silica, methods of preparation of nanosilica from sodium silicate, effect factors and additives were discussed. Then, cellulose fiber-silica nanocomposites were synthesis via route from sodium silicate and route silicic acid. In the experiment of route from sodium silicate, the effects of types of sodium silicate, pH and target ratio of silica to fiber were investigated. From another aspect, the effects of types of sodium silicate, fiber concentration in mixture solution and target ratio of silica to fiber were tested in the experiment of route from silicic acid. Samples were investigated via zeta potential measurement, particle size distribution, ash content measurement and Scanning Electron Microscopy (SEM). The Results of the experiment of preparing silica sol were that the particle size of silica sol was smaller prepared in pH 11.7 than that prepared in pH 9.3. Then in the experiment of synthesis of cellulose fiber-silica nanocomposites, it was concluded that the zeta potential of all the samples were around -16 mV and the highest ash content of all the samples was only 1.4%. The results of SEM images showed only a few of silica particles could be observed on the fiber surface, which corresponded to the value of ash content measurement.
Resumo:
Prediction of variety composite means was shown to be feasible without diallel crossing the parental varieties. Thus, the predicted mean for a quantitative trait of a composite is given by: Yk = a1 sigmaVj + a2sigmaTj + a3 - a4
, with coefficients a1 = (n - 2k)/k²(n - 2); a2 = 2n(k - 1)/k²(n - 2); a3 = n(k - 1)/k(n - 1)(n - 2); and a4 = n²(k - 1)/k(n - 1)(n - 2); summation is for j = 1 to k, where k is the size of the composite (number of parental varieties of a particular composite) and n is the total number of parent varieties. Vj is the mean of varieties and Tj is the mean of topcrosses (pool of varieties as tester), and
and
are the respective average values in the whole set. Yield data from a 7 x 7 variety diallel cross were used for the variety means and for the "simulated" topcross means to illustrate the proposed procedure. The proposed prediction procedure was as effective as the prediction based on Yk =
- (
-
)/k, where
and
refer to the mean of hybrids (F1) and parental varieties, respectively, in a variety diallel cross. It was also shown in the analysis of variance that the total sum of squares due to treatments (varieties and topcrosses) can be orthogonally partitioned following the reduced model Yjj = mu + ½(v j + v j) +
+ h j+ h j, thus making possible an F test for varieties, average heterosis and variety heterosis. Least square estimates of these effects are also given
Resumo:
Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials
Resumo:
The collagen structure of isolated and in situ liver granuloma from Swiss Webster mice infected with Schistosoma mansoni was sequentially and three-dimensionally analyzed during different times of infection (early acute, acute, transitional acute-chronic, and chronic phases) by laser scanning confocal microscopy and electron scanning variable vacuum microscopy. The initial granuloma structure is characterized by vascular collagen residues and by anchorage points (or fiber radiation centers), from where collagenous fibers are angularly shed and self-assembled. During the exudative-productive stage, the self-assembly of these fibers minimizes energy and mass through continuous tension and focal compression. The curvature or angles between collagen fibers probably depends on the fibroblastic or myofibroblastic organization of stress fibers. Gradually, the loose unstable lattice of the exudative-productive stage transforms into a highly packed and stable architecture as a result of progressive compactness. The three-dimensional architecture of granulomas provides increased tissue integrity, efficient distribution of soluble compounds and a haptotactic background to the cells.
Resumo:
The aim of this research is to examine the pricing anomalies existing in the U.S. market during 1986 to 2011. The sample of stocks is divided into decile portfolios based on seven individual valuation ratios (E/P, B/P, S/P, EBIT/EV, EVITDA/EV, D/P, and CE/P) and price momentum to investigate the efficiency of individual valuation ratio and their combinations as portfolio formation criteria. This is the first time in financial literature when CE/P is employed as a constituent of composite value measure. The combinations are based on median scaled composite value measures and TOPSIS method. During the sample period value portfolios significantly outperform both the market portfolio and comparable glamour portfolios. The results show the highest return for the value portfolio that was based on the combination of S/P & CE/P ratios. The outcome of this research will increase the understanding on the suitability of different methodologies for portfolio selection. It will help managers to take advantage of the results of different methodologies in order to gain returns above the market.
Resumo:
In the present study the age-related changes of the striated muscle elastic fiber system were investigated in the diaphragm and rectus abdominis muscles of 1-, 4-, 8- and 18-month-old rats. The activation patterns of these muscles differ in that the diaphragm is regularly mobilized tens of times every minute during the entire life of the animal whereas the rectus abdominis, although mobilized in respiration, is much less and more irregularly activated. The elastic fibers were stained by the Verhoeff technique for mature elastic fibers. Weigert stain was used to stain mature and elaunin elastic fibers, and Weigert-oxone to stain mature, elaunin and oxytalan elastic fibers. The density of mature and elaunin elastic fibers showed a progressive increase with age, whereas the amount of oxytalan elastic fibers decreased in both diaphragm and rectus abdominis muscles and their muscular fascias. These age-related quantitative and structural changes of the elastic fiber system may reduce the viscoelastic properties of the diaphragm and rectus abdominis muscles, which may compromise the transmission of tensile muscle strength to the tendons and may affect maximum total strength.
Resumo:
The objective of the present study was to evaluate associations between fiber intake, colonic transit time and stool frequency. Thirty-eight patients aged 4 to 14 years were submitted to alimentary evaluation and to measurement of colonic transit time. The median fiber intake of the total sample was age + 10.3 g/day. Only 18.4% of the subjects presented a daily dietary fiber intake below the levels recommended by the American Health Foundation. In this group, the median left colonic transit time was shorter than in the group with higher dietary fiber intake (11 vs 17 h, P = 0.067). The correlation between stool frequency and colonic transit time was negative and weak for left colon (r = -0.3, P = 0.04), and negative and moderate for rectosigmoid and total colon (r = -0.5, P<0.001 and r = -0.5, P<0.001, respectively). The stool frequency was lower in the group with slow transit time (0.8 vs 2.3 per week, P = 0.014). In conclusion, most patients with chronic functional constipation had adequate dietary fiber intake. The negative correlation between stool frequency and colonic transit time increased progressively from proximal segments to distal segments of the colon. Patients with normal and prolonged colonic transit time differ in terms of stool frequency.
Resumo:
We developed an efficient method to prepare a hybrid inorganic-organic composite based on polyvinyl alcohol (PVA) and polysiloxane using the sol-gel disc technique. Antigen obtained from Yersinia pestis was covalently immobilized onto these discs with glutaraldehyde and used as solid phase in ELISA for antibody detection in serum of rabbits experimentally immunized with plague. Using 1.25 µg antigen per disc, a peroxidase conjugate dilution of 1:4,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. These values are similar to those used for PVA-glutaraldehyde discs, plasticized filter paper discs and the polyaniline-Dacron composite discs. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates, with the amount of antigen being one fourth that employed in conventional PVC plates (5 µg/well). In addition to the performance of the polysiloxane/PVA-glutaraldehyde disc as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.
Resumo:
The main objective of this study was to develop mathematical model capable to describe the effect of ultrastructural features on the longitudinal modulus of elasticity of softwood fiber. Another objective was to identify, based on ultrastructural features, a potential explanatory factor for the mechanical difference between Norway spruce and Scots pine fibers and to demonstrate its influence utilizing developed modelling tools. According to the literature, the main difference between the pine and spruce fibers is the pit structure, which is clearly different in these fibers. The spruce fiber contains a lot of tiny pits, whereas the pits of the pine fiber are larger and the total number of them is smaller. The effect of the pits on the longitudinal modulus of elasticity of fiber is studied with both the analytical and the numerical model. The results show that, although the spruce fiber seems to contain clearly more pits, larger pits appearing in the pine fiber turn out to have a stronger influence on the longitudinal modulus of elasticity of the fiber. The effect of local variation of microfibril angle which occurs near the pits seems to be minor. Moreover, the results suggest that spruce fibers may have higher ultimate strength due to the more uniform straining behavior.
Resumo:
The present prospective study was carried out to determine dietary fiber and energy intake and nutritional status of children during the treatment of chronic constipation. Twenty-five patients aged 2 to 12 years with chronic constipation were submitted to clinical evaluation, assessment of dietary patterns, and anthropometry before and after 45 and 90 days of treatment. The treatment of chronic constipation included rectal disimpaction, ingestion of mineral oil and diet therapy. The standardized diet prescribed consisted of regular food without a fiber supplement and met the nutrient requirements according to the recommended daily allowance. The fiber content was 9.0 to 11.9 g for patients aged less than 6 years and 12.0 to 18.0 g for patients older than 6 years. Sixteen patients completed the 90-day follow-up and all presented clinical improvement. The anthropometric variables did not change, except midarm circumference and triceps skinfold thickness which were significantly increased. Statistically significant increases were also found in percent calorie intake adequacy in terms of recommended daily allowance (55.5 to 76.5% on day 45 and to 68.5% on day 90; P = 0.047). Percent adequacy of minimum recommended daily intake of dietary fiber (age + 5 g) increased during treatment (from 46.8 to 52.8% on day 45 and to 56.3% on day 90; P = 0.009). Food and dietary fiber intake and triceps skinfold thickness increased during follow-up. We conclude that the therapeutic program provided a good clinical outcome.