954 resultados para Numerical linear algebra
Resumo:
Direct numerical simulation has been carried out for turbulent flow set up by a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction. This flow geometry creates a qualitatively similar flow pattern as observed near, a sudden, pipe expansion or a plane backward-facing step, characterized by flow separation and reattachment. A region of intense turbulence intensity and high wall-shear-stress fluctuations is formed in,the recirculating I region downstream of the step, where high mass-transfer capacity was also experimentally observed. Since, corrosion is frequently mass-transfer., controlled, our findings, put forward this apparatus as useful tool for future corrosion research.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In this paper we examine the effects of varying several experimental parameters in the Kane quantum computer architecture: A-gate voltage, the qubit depth below the silicon oxide barrier, and the back gate depth to explore how these variables affect the electron density of the donor electron. In particular, we calculate the resonance frequency of the donor nuclei as a function of these parameters. To do this we calculated the donor electron wave function variationally using an effective-mass Hamiltonian approach, using a basis of deformed hydrogenic orbitals. This approach was then extended to include the electric-field Hamiltonian and the silicon host geometry. We found that the phosphorous donor electron wave function was very sensitive to all the experimental variables studied in our work, and thus to optimize the operation of these devices it is necessary to control all parameters varied in this paper.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
High-resolution numerical model simulations have been used to study the local and mesoscale thermal circulations in an Alpine lake basin. The lake (87 km(2)) is situated in the Southern Alps, New Zealand and is located in a glacially excavated rock basin surrounded by mountain ranges that reach 3000 m in height. The mesoscale model used (RAMS) is a three-dimensional non-hydrostatic model with a level 2.5 turbulence closure scheme. The model demonstrates that thermal forcing at local (within the basin) and regional (coast-to-basin inflow) scales drive the observed boundary-layer airflow in the lake basin during clear anticyclonic summertime conditions. The results show that the lake can modify (perturb) both the local and regional wind systems. Following sunrise, local thermal circulations dominate, including a lake breeze component that becomes embedded within the background valley wind system. This results in a more divergent flow in the basin extending across the lake shoreline. However, a closed lake breeze circulation is neither observed nor modelled. Modelling results indicate that in the latter part of the day when the mesoscale (coast-to-basin) inflow occurs, the relatively cold pool of lake air in the basin can cause the intrusion to decouple from the surface. Measured data provide qualitative and quantitative support for the model results.
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
A stickiness testing device based on the probe tack test has been designed and tested. It was used to perform in situ characterization of drying hemispherical drops with an initial radius 3.5 mm. Tests were carried out in two drying temperatures, 63 and 95 degreesC. Moisture and temperature histories of the drying drops of fructose, honey, sucrose, maltodextrin and sucrose-maltodextrin mixtures were determined. The rates of moisture evaporation of the fructose solution was the fastest while those of the maltodextrin solution was the lowest. A profile reversal was observed when the temperature profiles of these materials were compared. Different modes of failure were observed during the stickiness tests. Pure fructose and honey solutions remained completely sticky and failed cohesively until the end of drying. Pure sucrose solution remained sticky and failed cohesively until complete crystallization occurred. The surface of the maltodextrin drops formed a skin shortly after the start of drying. It exhibited adhesive failure and reached a state of non-adhesion. Addition of maltodextrin significantly altered the stickiness of sucrose solution. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A switch-mode assisted linear amplifier (SMALA) combining a linear (Class B) and a switch-mode (Class D) amplifier is presented. The usual single hysteretic controlled half-bridge current dumping stage is replaced by two parallel buck converter stages, in a parallel voltage controlled topology. These operate independently: one buck converter sources current to assist the upper Class B output device, and a complementary converter sinks current to assist the lower device. This topology lends itself to a novel control approach of a dead-band at low power levels where neither class D amplifier assists, allowing the class B amplifier to supply the load without interference, ensuring high fidelity. A 20 W implementation demonstrates 85% efficiency, with distortion below 0.08% measured across the full audio bandwidth at 15 W. The class D amplifier begins assisting at 2 W, and below this value, the distortion was below 0.03%. Complete circuitry is given, showing the simplicity of the additional class D amplifier and its corresponding control circuitry.
Resumo:
A new wavelet-based adaptive framework for solving population balance equations (PBEs) is proposed in this work. The technique is general, powerful and efficient without the need for prior assumptions about the characteristics of the processes. Because there are steeply varying number densities across a size range, a new strategy is developed to select the optimal order of resolution and the collocation points based on an interpolating wavelet transform (IWT). The proposed technique has been tested for size-independent agglomeration, agglomeration with a linear summation kernel and agglomeration with a nonlinear kernel. In all cases, the predicted and analytical particle size distributions (PSDs) are in excellent agreement. Further work on the solution of the general population balance equations with nucleation, growth and agglomeration and the solution of steady-state population balance equations will be presented in this framework. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We analyze the sequences of round-off errors of the orbits of a discretized planar rotation, from a probabilistic angle. It was shown [Bosio & Vivaldi, 2000] that for a dense set of parameters, the discretized map can be embedded into an expanding p-adic dynamical system, which serves as a source of deterministic randomness. For each parameter value, these systems can generate infinitely many distinct pseudo-random sequences over a finite alphabet, whose average period is conjectured to grow exponentially with the bit-length of the initial condition (the seed). We study some properties of these symbolic sequences, deriving a central limit theorem for the deviations between round-off and exact orbits, and obtain bounds concerning repetitions of words. We also explore some asymptotic problems computationally, verifying, among other things, that the occurrence of words of a given length is consistent with that of an abstract Bernoulli sequence.
Resumo:
Um algoritmo numérico foi criado para apresentar a solução da conversão termoquímica de um combustível sólido. O mesmo foi criado de forma a ser flexível e dependente do mecanismo de reação a ser representado. Para tanto, um sistema das equações características desse tipo de problema foi resolvido através de um método iterativo unido a matemática simbólica. Em função de não linearidades nas equações e por se tratar de pequenas partículas, será aplicado o método de Newton para reduzir o sistema de equações diferenciais parciais (EDP’s) para um sistema de equações diferenciais ordinárias (EDO’s). Tal processo redução é baseado na união desse método iterativo à diferenciação numérica, pois consegue incorporar nas EDO’s resultantes funções analíticas. O modelo reduzido será solucionado numericamente usando-se a técnica do gradiente bi-conjugado (BCG). Tal modelo promete ter taxa de convergência alta, se utilizando de um número baixo de iterações, além de apresentar alta velocidade na apresentação das soluções do novo sistema linear gerado. Além disso, o algoritmo se mostra independente do tamanho da malha constituidora. Para a validação, a massa normalizada será calculada e comparada com valores experimentais de termogravimetria encontrados na literatura, , e um teste com um mecanismo simplificado de reação será realizado.
Resumo:
O presente trabalho objetiva avaliar o desempenho do MECID (Método dos Elementos de Contorno com Interpolação Direta) para resolver o termo integral referente à inércia na Equação de Helmholtz e, deste modo, permitir a modelagem do Problema de Autovalor assim como calcular as frequências naturais, comparando-o com os resultados obtidos pelo MEF (Método dos Elementos Finitos), gerado pela Formulação Clássica de Galerkin. Em primeira instância, serão abordados alguns problemas governados pela equação de Poisson, possibilitando iniciar a comparação de desempenho entre os métodos numéricos aqui abordados. Os problemas resolvidos se aplicam em diferentes e importantes áreas da engenharia, como na transmissão de calor, no eletromagnetismo e em problemas elásticos particulares. Em termos numéricos, sabe-se das dificuldades existentes na aproximação precisa de distribuições mais complexas de cargas, fontes ou sorvedouros no interior do domínio para qualquer técnica de contorno. No entanto, este trabalho mostra que, apesar de tais dificuldades, o desempenho do Método dos Elementos de Contorno é superior, tanto no cálculo da variável básica, quanto na sua derivada. Para tanto, são resolvidos problemas bidimensionais referentes a membranas elásticas, esforços em barras devido ao peso próprio e problemas de determinação de frequências naturais em problemas acústicos em domínios fechados, dentre outros apresentados, utilizando malhas com diferentes graus de refinamento, além de elementos lineares com funções de bases radiais para o MECID e funções base de interpolação polinomial de grau (um) para o MEF. São geradas curvas de desempenho através do cálculo do erro médio percentual para cada malha, demonstrando a convergência e a precisão de cada método. Os resultados também são comparados com as soluções analíticas, quando disponíveis, para cada exemplo resolvido neste trabalho.
Resumo:
Modelos de escoamento multifásico são amplamente usados em diversas áreas de pesquisa ambiental, como leitos fluidizados, dispersão de gás em líquidos e vários outros processos que englobam mais de uma propriedade físico-química do meio. Dessa forma, um modelo multifásico foi desenvolvido e adaptado para o estudo do transporte de sedimentos de fundo devido à ação de ondas de gravidade. Neste trabalho, foi elaborado o acoplamento multifásico de um modelo euleriano não-linear de ondas do tipo Boussinesq, baseado na formulação numérica encontrada em Wei et al. (1995), com um modelo lagrangiano de partículas, fundamentado pelo princípio Newtoniano do movimento com o esquema de colisões do tipo esferas rígidas. O modelo de ondas foi testado quanto à sua fonte geradora, representada por uma função gaussiana, pá-pistão e pá-batedor, e quanto à sua interação com a profundidade, através da não-linearidade e de propriedades dispersivas. Nos testes realizados da fonte geradora, foi observado que a fonte gaussiana, conforme Wei et al. (1999), apresentou melhor consistência e estabilidade na geração das ondas, quando comparada à teoria linear para um kh . A não-linearidade do modelo de ondas de 2ª ordem para a dispersão apresentou resultados satisfatórios quando confrontados com o experimento de ondas sobre um obstáculo trapezoidal, onde a deformação da onda sobre a estrutura submersa está em concordância com os dados experimentais encontrados na literatura. A partir daí, o modelo granular também foi testado em dois experimentos. O primeiro simula uma quebra de barragem em um tanque contendo água e o segundo, a quebra de barragem é simulada com um obstáculo rígido adicionado ao centro do tanque. Nesses experimentos, o algoritmo de colisão foi eficaz no tratamento da interação entre partícula-partícula e partícula-parede, permitindo a evidência de processos físicos que são complicados de serem simulados por modelos de malhas regulares. Para o acoplamento do modelo de ondas e de sedimentos, o algoritmo foi testado com base de dados da literatura quanto à morfologia do leito. Os resultados foram confrontados com dados analíticos e de modelos numéricos, e se mostraram satisfatórios com relação aos pontos de erosão, de sedimentação e na alteração da forma da barra arenosa
Resumo:
Considerou-se o ajustamento de equações de regressão não-linear e o teste da razão de verossimilhança, com aproximações pelas estatísticas qui-quadrado e F, para testar as hipóteses de igualdade de qualquer subconjunto de parâmetros e de identidade dos modelos para dados com repetições provenientes de experimento com delineamento em blocos completos casualizados. Concluiu-se que as duas aproximações podem ser utilizadas, mas a aproximação pela estatística F deve ser preferida, principalmente para pequenas amostras.