949 resultados para Nonstructural Glycoprotein
Resumo:
Initiation of Bacillus subtilis bacteriophage SPP1 replication requires the phage-encoded genes 38, 39 and 40 products (G38P, G39P and G40P). G39P, which does not bind DNA, interacts with the replisome organiser, G38P, in the absence of ATP and with the ATP-activated hexameric replication fork helicase, G40P. G38P, which specifically interacts with the phage replication origin (oriL) DNA, does not seem to form a stable complex with G40P in solution. G39P when complexed with G40P-ATP inactivates the single-stranded DNA binding, ATPase and unwinding activities of G40P, and such effects are reversed by increasing amounts of G38P. Unwinding of a forked substrate by G40P-ATP is increased about tenfold by the addition of G38P and G39P to the reaction mixture. The specific protein-protein interactions between oriL-bound G38P and the G39P-G40P-ATPgammaS complex are necessary for helicase delivery to the SPP1 replication origin. Formation of G38P-G39P heterodimers releases G40P-ATPgammaS from the unstable oriL-G38P-G39P-G40P-ATPgammaS intermediate. G40P-ATPgammaS binds to the origin region, the uncomplexed G38P fraction remains bound to oriL, and the G38P-G39P heterodimer is lost from the complex. We demonstrate that G39P is a component of an oligomeric nucleoprotein complex which plays an important role in the initiation of SPP1 replication.
Resumo:
Imatinib mesylate, a selective inhibitor of tyrosine kinases, has excellent efficacy in the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). Inducing durable responses and achieving prolonged survival, it has become the standard of care for the treatment of these diseases. It has opened the way to the development of additional tyrosine kinase inhibitors (TKIs), including sunitinib, nilotinib, dasatinib and sorafenib, all indicated for the treatment of various haematological malignancies and solid tumours. TKIs are prescribed for prolonged periods and are often taken by patients with - notably cardiovascular - comorbidities. Hence TKIs are regularly co-administered with cardiovascular drugs, with a considerable risk of potentially harmful drug-drug interactions due to the large number of agents used in combination. However, this aspect has received limited attention so far, and a comprehensive review of the published data on this important topic has been lacking. We review here the available data and pharmacological mechanisms of interactions between commonly prescribed cardiovascular drugs and the TKIs marketed at present. Regular updating of the literature on this topic will be mandatory, as will the prospective reporting of unexpected clinical observations, given the fact that these drugs have been only recently marketed.
Resumo:
First trimester biochemical trisomy screening is based on serum concentrations of pregnancy-associated plasma protein A (PAPP-A) and human chorionic gonadotrophin (hCG). Our aim was to confirm previously suggested modifications in serum marker concentrations after in vitro fertilisation (IVF) and embryo transfer (ET), and to assess the need of establishing normal medians for trisomy screening in these. We compared 56 singleton pregnancies obtained after ET (of which 40 in gonadotrophin stimulation cycles) with 120 gestation-matched spontaneous controls. For multiple pregnancies, 17 treated cycles were compared with 25 controls. The levels of PAPP-A, hCG, and pregnancy-specific β1-glycoprotein were determined and compared between treated and spontaneous pregnancies. Serum PAPP-A levels were reduced in pregnancies achieved after gonadotrophin-stimulated IVF and ET, and this was more pronounced in earlier gestational stages. SP1 followed the same trend, while hCG tended to be increased, and this not only in pregnancies obtained from gonadotrophin-stimulated but also from oestrogen supported cycles, and with a more pronounced effect in the later gestational ages examined here. Decreased PAPP-A together with increased hCG concentrations produce falsely elevated results in first trimester Down syndrome screening, but we do not recommend the establishment of normal medians for IVF pregnancies due to the variations in stimulation protocols.
Resumo:
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Resumo:
During the selection of monoclonal antibodies (MAb) raised against purified carcinoembryonic antigen (CEA), two MAbs were identified which immunoprecipitated a glycoprotein of 95 kD present both in perchloric acid extracts of normal lung and on the surface of normal granulocytes. This antigen was distinct from the previously reported normal glycoprotein crossreacting with CEA (NCA) which had a molecular weight of 55 kD. The difference between the smaller and the larger crossreacting antigens termed NCA-55 and NCA-95, respectively, was demonstrated by SDS-polyacrylamide gel electrophoresis, by elution from Sephadex-G200 and by selective binding to a series of anti-CEA MAb. Out of six MAb which all bound CEA purified from colon carcinoma, three did not react with these two crossreacting antigens, one bound only NCA-95, one reacted only with NCA-55 and one reacted with both NCA-55 and NCA-95. Immunoadsorbent purified preparations of 125I labelled NCA-95 and NCA-55 were found useful for the screening of new anti-CEA MAb. In addition, when tested on frozen sections of colon carcinoma, normal spleen, normal lung and pancreas, each type of MAb gave a clearly different pattern of reactivity. The three anti-CEA MAb which did not bind any of the crossreacting antigens stained only the colon carcinoma cells; the MAb binding to either one of the two types of NCA gave a similar pattern of reactivity both on colon carcinoma cells and on granulocytes. However, on normal lung and pancreas, the MAb binding NCA-55 stained granulocytes as well as bronchiolar and alveolar epithelial cells in lung and inter- and intra-lobular duct epithelial cells in pancreas, whereas the MAb binding only NCA-95 stained only the granulocytes. Thus, the newly identified NCA-95 appears to differ from NCA-55 not only in terms of molecular size and antigenicity but also by the fact that in normal lung and pancreas it is found in granulocytes but not in epithelial cells.
Resumo:
AIM: Total imatinib concentrations are currently measured for the therapeutic drug monitoring of imatinib, whereas only free drug equilibrates with cells for pharmacological action. Due to technical and cost limitations, routine measurement of free concentrations is generally not performed. In this study, free and total imatinib concentrations were measured to establish a model allowing the confident prediction of imatinib free concentrations based on total concentrations and plasma proteins measurements. METHODS: One hundred and fifty total and free plasma concentrations of imatinib were measured in 49 patients with gastrointestinal stromal tumours. A population pharmacokinetic model was built up to characterize mean total and free concentrations with inter-patient and intrapatient variability, while taking into account α1 -acid glycoprotein (AGP) and human serum albumin (HSA) concentrations, in addition to other demographic and environmental covariates. RESULTS: A one compartment model with first order absorption was used to characterize total and free imatinib concentrations. Only AGP influenced imatinib total clearance. Imatinib free concentrations were best predicted using a non-linear binding model to AGP, with a dissociation constant Kd of 319 ng ml(-1) , assuming a 1:1 molar binding ratio. The addition of HSA in the equation did not improve the prediction of imatinib unbound concentrations. CONCLUSION: Although free concentration monitoring is probably more appropriate than total concentrations, it requires an additional ultrafiltration step and sensitive analytical technology, not always available in clinical laboratories. The model proposed might represent a convenient approach to estimate imatinib free concentrations. However, therapeutic ranges for free imatinib concentrations remain to be established before it enters into routine practice.
Resumo:
The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.
Resumo:
Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma "backpack tumor" model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.
Resumo:
Mouse mammary tumor virus (MMTV) infects the host via mucosal surfaces and exploits the host immune system for systemic spread and chronic infection. We have tested a neutralizing rat monoclonal antibody specific for the retroviral envelope glycoprotein gp52 for its efficiency in preventing acute and chronic mucosal and systemic infection. The antibody completely inhibits the superantigen response and chronic viral infection following systemic or nasal infection. Surprisingly however, the antibody only partially inhibits the early infection of antigen-presenting cells in the draining lymph node. Despite this initially inefficient protection from infection, superantigen-specific B- and T-cell responses and systemic viral spread are abolished, leading to complete clearance of the retroviral infection and hence interruption of the viral life cycle. In conclusion, systemic neutralizing monoclonal antibodies can provide an efficient protection against chronic retroviral amplification and persistence.
Resumo:
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.
Resumo:
BACKGROUND: Physiological changes associated with pregnancy may alter antiretroviral plasma concentrations and might jeopardize prevention of mother-to-child HIV transmission. Lopinavir is one of the protease inhibitors more frequently prescribed during pregnancy in Europe. We described the free and total pharmacokinetics of lopinavir in HIV-infected pregnant and non-pregnant women, and evaluated whether significant alterations in its disposition and protein binding warrant systematic dosage adjustment. METHODS: Plasma samples were collected at first, second and third trimester of pregnancy, at delivery, in umbilical cord and postpartum. Lopinavir free and total plasma concentrations were measured by HPLC-MS/MS. Bayesian calculations were used to extrapolate total concentrations to trough (Cmin). RESULTS: A total of 42 HIV-positive pregnant women and 37 non-pregnant women on lopinavir/ritonavir were included in the study. Compared to postpartum and control values, total lopinavir Cmin was decreased moderately (31-39%) during pregnancy, and free Cmin minimally, showing significant alteration only at delivery (-35%). However, total and free Cmin remained in all patients above the target concentrations for wild-type virus of 1,000 ng/ml, and above the unbound IC50(WT) of 0.64-0.77 ng/ml of lopinavir, respectively. Lopinavir free fractions remained higher during pregnancy compared to postpartum and controls, and were influenced by α-1-acid-glycoprotein and albumin decrease. Free cord-to-mother ratio (0.43) was 2.7-fold higher than total cord-to-mother ratio (0.16), suggesting higher fetal exposure. CONCLUSIONS: The moderate decrease of total lopinavir concentrations during pregnancy is not associated with proportional decrease in free concentrations. Both reach a nadir at delivery, albeit not to an extent that would put treatment-naive women at risk of insufficient exposure to the free, pharmacologically active concentrations of lopinavir. No dosage adjustment is therefore needed during pregnancy as it is unlikely to further enhance treatment efficacy but could potentially increase the risk of maternal and fetal toxicity. Nonetheless, in case of viral resistance in treatment-experienced pregnant women, loss of virological control or questionable adherence, it is justified to consider lopinavir dosage adjustment based on total plasma concentration measurement.
Resumo:
BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.
Resumo:
The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.
Resumo:
PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.
Resumo:
Introduction: Therapeutic drug monitoring (TDM) of imatinib has been increasingly proposed for chronic myeloid leukaemia (CML) patients, as several studies have found a correlation between trough concentrations (Cmin) >=1000ng/ml and improved response. The pharmacological monitoring project of EUTOS (European Treatment and Outcome Study) was launched to increase the availability of imatinib TDM, standardize labs, and validate proposed Cmin thresholds. Using the collected data, the objective of this analysis was to characterize imatinib Population pharmacokinetics (Pop-PK) in a large cohort of European patients, to quantify its variability and the influence of demographic factors and comedications, and to derive individual exposure variables suitable for further concentration-effect analyses.¦Methods: 4095 PK samples from 2478 adult patients were analyzed between 2006 and 2010 by LC-MS-MS and considered for Pop-PK analysis by NONMEM®. Model building used data from 973 patients with >=2 samples available (2590 samples). A sensitivity analysis was performed using all data. Available comedications (27%) were classified into inducers or inhibitors of P-glycoprotein, CYP3A4/5 and organic-cation-transporter-1 (hOCT-1).¦Results: A one-compartment model with linear elimination, zero-order absorption fitted the data best. Estimated Pop-PK parameters (interindividual variability, IIV %CV) for a 40-year old male patient were: clearance CL = 17.3 L/h (37.7%), volume V = 429L (51.1%), duration of absorption D1 = 3.2h. Outliers, reflecting potential compliance and time recording errors, were taken into account by estimating an IIV on the residual error (35.4%). Intra-individual residuals were 29.1% (proportional) plus ± 84.6 ng/mL (additive). Female patients had a 15.2% lower CL (14.6 L/h). A piece-wise linear effect of age estimated a CL of 18.7 L/h at 20 years, 17.3 L/h at 40 and 13.8 L/h at 60 years. These covariates explained 2% (CL) and 4.5% (V) of IIV variability. No effect of comedication was found. The sensitivity analysis expectedly estimated increased IIV, but similar fixed effect parameters.¦Conclusion: Imatinib PK was well described in a large cohort of CML patients under field conditions and results were concordant with previous studies. Patient characteristics explain only little IIV, confirming limited utility of prior dosage adjustment. As intra-variability is smaller than inter-patient variability, dose adjustment guided by TDM could however be beneficial in order to bring Cmin into a given therapeutic target.