873 resultados para Nickel-titanium
Resumo:
Thermochemical surface gas nitriding of ß21s, Timetal 205 and a Ti–Al alloy was conducted using differential scanning calorimeter equipment, in nominally pure nitrogen at 850 °C and 950 °C (ß21s), 730 °C and 830 °C (Timetal 205), and 950 °C and 1050 °C (Ti–Al) for 1 h, 3 h and 5 h. X-ray diffraction analyses showed new phases formed in the nitrided layer, depending on the alloy and the time and the temperature of nitriding. Microstructures were analyzed using optical microscopy. Cross-sectional microhardness profiles of cross-sectional samples after nitriding were obtained using a Knoop indenter.
Resumo:
This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.
Resumo:
We employ a quantum mechanical bond order potential in an atomistic simulation of channeled flow. We show that the original hypothesis that this is achieved by a cooperative deployment of slip and twinning is correct, first because a twin is able to “protect” a 60° ordinary dislocation from becoming sessile, and second because the two processes are found to be activated by Peierls stresses of similar magnitude. In addition we show an explicit demonstration of the lateral growth of a twin, again at a similar level of stress. Thus these simultaneous processes are shown to be capable of channeling deformation into the observed state of plane strain in so-called “A”-oriented mechanical testing of titanium aluminide superalloy.
Resumo:
Nickel sulfamate solution was applied to mild steel substrates by the process of selective plating. The coated samples were heated to temperatures in the range of 50–1000 °C. Thermal analysis, X-ray diffraction and microscopy techniques were used to investigate the effect of secondary heating on the microstructure, mechanical properties and the composition of the surface coatings.
The microscopy analysis showed that the secondary heating caused diffusion within the coating itself and diffusion between the coating and the substrate as concentrations of iron increased in the coating and nickel appeared in the substrate. This diffusion redistribution also caused a phase transformation in the coating as NiO formed on the surface when the coating was heated in a furnace fitted with a nitrogen flow. However this transformation was found not to occur when the coating was heated in a sealed helium environment. Layer and grain growth occurred as temperature increased with the grains taking their preferred orientation as they were heated.
The surface hardness was found to initially rise up from 565 HV to 600 HV when heated to 200 °C. After 200 °C the surface hardness decreased in two stages before falling to 110 HV by 1000 °C. During tensile testing the coated samples performed marginally better in tension than the uncoated samples, however the temperatures used were not elevated high enough to show any real degradation during the tensile testing of the nickel coating that was shown during hardness testing and the microscopy analysis