798 resultados para New technology informational
Resumo:
The catches of three longliners, including two recently converted small artisanal vessels and one large leased foreign longliner, were compared to provide some indication of the feasibility of transferring new longline technology to small vessels in the northeastern Brazilian pelagic longline fishery. Comparisons of catches between the two recently converted vessels operating across the same spatial and temporal scales showed no significant differences for the main target species, providing evidence to suggest that adoption of the technology was rapid and straightforward. A comparison of relative catch rates between one of the recently converted small longliners and the leased longliner across the same temporal scale, but in different areas, showed that while there were significant differences detected for some species, contributing to a significant reduction in total CPUE, the relative abundance of commercially important species within the operational range of the smaller vessels was sufficient for economically viable catches. The results showed that the net financial profit from the artisanal longliner was almost 10 times greater than that derived from existing fishing methods. The inclusion of some artisanal vessels in this fishery may help address the social and economic problems currently faced by fi
Resumo:
Technological progress is determined, to a great extent, by developments in material science. Breakthroughs can happen when a new type of material or new combinations of known materials with different dimensionality and functionality are created. Multilayered structures, being planar or concentric, are now emerging as major players at the forefront of research. Raman spectroscopy is a well-established characterization technique for carbon nanomaterials and is being developed for layered materials. In this issue of ACS Nano, Hirschmann et al. investigate triple-wall carbon nanotubes via resonant Raman spectroscopy, showing how a wealth of information can be derived about these complex structures. The next challenge is to tackle hybrid heterostructures, consisting of different planar or concentric materials, arranged "on demand" to achieve targeted properties.
Resumo:
Since ubiquitous technology was introduced in the early 1980s, it has rapidly developed, and been applied to various domains mainly for the improvement of human life. In this article, the authors propose that ubiquitous computing technology can be effectively used for the design and manufacturing of a product by proposing a new paradigm, called UbiDM (Design and Manufacture via Ubiquitous Computing Technology). The key aspect of UbiDM is the utilisation of the entire product lifecycle information obtained via ubiquitous computing technology for the design and manufacture of the product. The new paradigm can solve many of the problems that have not been properly handled by previous manufacturing paradigms. Specifically, it will address the concept of UbiDM by the following aspects: (1) why there is a need for UbiDM; (2) the essence of UbiDM; (3) enabling technologies; (4) application area; (5) worldwide RD status; and (6) the societal impacts of UbiDM.