918 resultados para Neuronal oscillations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents. Because the hippocampus and the subventricular zone, which are affected in AD, are the unique regions containing stem cells with neurogenic potential in the adult brain, it might be hypothesized that this multipotent cell compartment is the predominant source of seladin-1 in normal brain. In the present study, we isolated and characterized human mesenchymal stem cells (hMSC) as a model of cells with the ability to differentiate into neurons. hMSC were then differentiated toward a neuronal phenotype (hMSC-n). These cells were thoroughly characterized and proved to be neurons, as assessed by molecular and electrophysiological evaluation. Seladin-1 expression was determined and found to be significantly reduced in hMSC-n compared to undifferentiated cells. Accordingly, the total content of cholesterol was decreased after differentiation. These original results demonstrate for the first time that seladin-1 is abundantly expressed by stem cells and appear to suggest that reduced expression in AD might be due to an altered pool of multipotent cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hallucinations are perceptions in the absence of a corresponding external sensory stimulus. However, during auditory verbal hallucinations, activation of the primary auditory cortex has been described. AIMS: The objective of this study was to investigate whether this activation of the auditory cortex contributes essentially to the character of hallucinations and attributes them to alien sources, or whether the auditory activation is a sign of increased general auditory attention to external sounds. METHOD: The responsiveness of the auditory cortex was investigated by auditory evoked potentials (N100) during the simultaneous occurrence of hallucinations and external stimuli. Evoked potentials were computed separately for periods with and without hallucinations; N100 power, topography and brain electrical sources were analysed. RESULTS: Hallucinations lowered the N100 amplitudes and changed the topography, presumably due to a reduced left temporal responsivity. CONCLUSIONS: This finding indicates competition between auditory stimuli and hallucinations for physiological resources in the primary auditory cortex. The abnormal activation of the primary auditory cortex may thus be a constituent of auditory hallucinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts such bursting, the present study shows that partial blockade of I(NaP) with low doses of riluzole maintains bursting activity with unchanged burst rate and burst duration. More important, low doses of riluzole turned bursts composed of persistent activity into bursts composed of oscillatory activity at around 5 Hz. In a search for the mechanisms underlying the generation of such intraburst oscillations, we found that activity-dependent synaptic depression was not changed with low doses of riluzole. On the other hand, low doses of riluzole strongly increased spike-frequency adaptation and led to early depolarization block when bursts were simulated by injecting long current pulses into single neurons in the absence of fast synaptic transmission. Phenytoin is another I(NaP) blocker. When applied in doses that reduced intrinsic activity by 80-90%, as did low doses of riluzole, it had no effect either on spike-frequency adaptation or on depolarization block. Nor did phenytoin induce intraburst oscillations after disinhibition. A theoretical model incorporating a depolarization block mechanism could reproduce the generation of intraburst oscillations at the network level. From these findings we conclude that riluzole-induced intraburst oscillations are a network-driven phenomenon whose major accommodation mechanism is depolarization block arising from strong sodium channel inactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: nitric oxide (NO) plays an important role in the regulation of cardiovascular and glucose homeostasis. Mice lacking the gene encoding the neuronal isoform of nitric oxide synthase (nNOS) are insulin-resistant, but the underlying mechanism is unknown. nNOS is expressed in skeletal muscle tissue where it may regulate glucose uptake. Alternatively, nNOS driven NO synthesis may facilitate skeletal muscle perfusion and substrate delivery. Finally, nNOS dependent NO in the central nervous system may facilitate glucose disposal by decreasing sympathetic nerve activity. METHODS: in nNOS null and control mice, we studied whole body glucose uptake and skeletal muscle blood flow during hyperinsulinaemic clamp studies in vivo and glucose uptake in skeletal muscle preparations in vitro. We also examined the effects of alpha-adrenergic blockade (phentolamine) on glucose uptake during the clamp studies. RESULTS: as expected, the glucose infusion rate during clamping was roughly 15 percent lower in nNOS null than in control mice (89 (17) vs 101 (12) [-22 to -2]). Insulin stimulation of muscle blood flow in vivo, and intrinsic muscle glucose uptake in vitro, were comparable in the two groups. Phentolamine, which had no effect in the wild-type mice, normalised the insulin sensitivity in the mice lacking the nNOS gene. CONCLUSIONS: insulin resistance in nNOS null mice was not related to defective insulin stimulation of skeletal muscle perfusion and substrate delivery or insulin signaling in the skeletal muscle cell, but to a sympathetic alpha-adrenergic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The forced oscillation technique (FOT) requires minimal patient cooperation and is feasible in preschool children. Few data exist on respiratory function changes measured using FOT following inhaled bronchodilators (BD) in healthy young children, limiting the clinical applications of BD testing in this age group. A study was undertaken to determine the most appropriate method of quantifying BD responses using FOT in healthy young children and those with common respiratory conditions including cystic fibrosis, neonatal chronic lung disease and asthma and/or current wheeze. METHODS: A pseudorandom FOT signal (4-48 Hz) was used to examine respiratory resistance and reactance at 6, 8 and 10 Hz; 3-5 acceptable measurements were made before and 15 min after the administration of salbutamol. The post-BD response was expressed in absolute and relative (percentage of baseline) terms. RESULTS: Significant BD responses were seen in all groups. Absolute changes in BD responses were related to baseline lung function within each group. Relative changes in BD responses were less dependent on baseline lung function and were independent of height in healthy children. Those with neonatal chronic lung disease showed a strong baseline dependence in their responses. The BD response in children with cystic fibrosis, asthma or wheeze (based on both group mean data and number of responders) was not greater than in healthy children. CONCLUSIONS: The BD response assessed by the FOT in preschool children should be expressed as a relative change to account for the effect of baseline lung function. The limits for a positive BD response of -40% and 65% for respiratory resistance and reactance, respectively, are recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify neurotoxic factors in meningitis, a neuronal cell line (HN33.1) was exposed to cerebrospinal fluid (CSF) obtained from rabbits with pneumococcal meningitis or Escherichia coli meningitis or 2 h and 6 h after meningitis was induced by proinflammatory bacterial products (pneumococcal cell walls, endotoxin). CSF from all types of meningitis induced similar degrees of cytotoxicity. When a soluble tumor necrosis factor (TNF) receptor that completely blocked TNF-mediated toxicity at 10(-7) M was used, all toxicity in meningitis caused by E. coli, endotoxin, or pneumococcal cell wall administration (2 h afterwards) was mediated by TNF. In contrast, CSF from animals with meningitis caused by live pneumococci or pneumococcal cell wall injection (6 h afterwards) retained cytotoxicity in the presence of the TNF receptor. Thus, in established pneumococcal meningitis, but not in the other forms of meningitis, TNF is not the only component toxic in this neuronal cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumococcal meningitis is associated with caspase 3-dependent apoptosis of recently post-mitotic immature neurons in the dentate gyrus of the hippocampus. The death of these cells is implicated in the learning and memory deficits in patients surviving the disease. The stress-activated protein kinase c-Jun N-terminal kinase (JNK) has been shown to be an important mediator of caspase 3-dependent neuronal apoptosis. However, whether JNK is involved in hippocampal apoptosis caused by pneumococcal meningitis has so far not been investigated. Here we show in a neonatal rat model of pneumococcal meningitis that JNK3 but not JNK1 or JNK2 is activated in the hippocampus during the acute phase of infection. At the cellular level, JNK3 activation was accompanied in the dentate gyrus by markedly increased phosphorylation of its major downstream target c-Jun in early immature (Hu-positive) neurons, but not in migrating (doublecortin-positive) neurons, the cells that do undergo apoptosis. These findings suggested that JNK may not be involved in pneumococcal meningitis-induced hippocampal apoptosis. Indeed, although intracerebroventricular administration of D-JNKI-1 or AS601245 (two highly specific JNK inhibitors) inhibited c-Jun phosphorylation and protein expression in the hippocampus, hippocampal apoptosis was unaffected. Collectively, these results demonstrate that JNK does not mediate hippocampal apoptosis in pneumococcal meningitis, and that JNK may be involved in processes unrelated to apoptosis in this disease.