881 resultados para Neuronal damage
Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients
Resumo:
Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.
Resumo:
We evaluated the porphyrinogenic ability of ethanol (20% in drinking water) per se, its effect on the development of sporadic porphyria cutanea tarda induced by hexachlorobenzene in female Wistar rats (170-190 g, N = 8/group), and the relationship with hepatic damage. Twenty-five percent of the animals receiving ethanol increased up to 14-, 25-, and 4.5-fold the urinary excretion of delta-aminolevulinate, porphobilinogen, and porphyrins, respectively. Ethanol exacerbated the precursor excretions elicited by hexachlorobenzene. Hepatic porphyrin levels increased by hexachlorobenzene treatment, while this parameter only increased (up to 90-fold) in some of the animals that received ethanol alone. Ethanol reduced the activities of uroporphyrinogen decarboxylase, delta-aminolevulinate dehydrase and ferrochelatase. In the ethanol group, many of the animals showed a 30% decrease in uroporphyrinogen activity; in the ethanol + hexachlorobenzene group, this decrease occurred before the one caused by hexachlorobenzene alone. Ethanol exacerbated the effects of hexachlorobenzene, among others, on the rate-limiting enzyme delta-aminolevulinate synthetase. The plasma activities of enzymes that are markers of hepatic damage were similar in all drug-treated groups. These results indicate that 1) ethanol exacerbates the biochemical manifestation of sporadic hexachlorobenzene-induced porphyria cutanea tarda; 2) ethanol per se affects several enzymatic and excretion parameters of the heme metabolic pathway; 3) since not all the animals were affected to the same extent, ethanol seems to be a porphyrinogenic agent only when there is a predisposition, and 4) hepatic damage showed no correlation with the development of porphyria cutanea tarda.
Resumo:
The neuroprotective effect of the immunosuppressant agent FK506 was evaluated in rats after brain ischemia induced for 15 min in the 4-vessel occlusion model. In the first experimental series, single doses of 1.0, 3.0 or 6.0 mg FK506/kg were given intravenously (iv) immediately after ischemia. In the second series, FK506 (1.0 mg/kg) was given iv at the beginning of reperfusion, followed by doses applied intraperitoneally (ip) 6, 24, 48, and 72 h post-ischemia. The same protocol was used in the third series except that all 5 doses were given iv. Damage to the hippocampal field CA1 was assessed 7 or 30 days post-ischemia on three different stereotaxic planes along the septotemporal axis of the hippocampus. Ischemia caused marked neurodegeneration on all planes (P<0.001). FK506 failed to provide neuroprotection to CA1 both when applied iv as a single dose of 1.0, 3.0 or 6.0 mg/kg (experiment 1), and after five iv injections of 1.0 mg/kg (experiment 3). In contrast, the repeated administration of FK506 combining iv plus ip administration reduced CA1 cell death on all stereotaxic planes both 7 and 30 days post-ischemia (experiment 2; P<=0.01). Compared to vehicle alone, FK506 reduced rectal temperature in a dose-dependent manner (P<=0.05); however, this effect did not alter normothermia (37ºC). FK506 reduced ischemic brain damage, an effect sustained over time and apparently dependent on repeated doses and on delivery route. The present data extend previous findings on the rat 4-vessel occlusion model, further supporting the possible use of FK506 in the treatment of ischemic brain damage.
Resumo:
Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.
Resumo:
Cell migration occurs extensively during mammalian brain development and persists in a few regions in the adult brain. Defective migratory behavior of neurons is thought to be the underlying cause of several congenital disorders. Knowledge of the dynamics and molecular mechanisms of neuronal movement could expand our understanding of the normal development of the nervous system as well as help decipher the pathogenesis of neurological developmental disorders. In our studies we have identified and characterized a specific ganglioside (9-O-acetyl GD3) localized to the membrane of neurons and glial cells that is expressed in regions of cell migration and neurite outgrowth in the developing and adult rat nervous system. In the present article we review our findings that demonstrate the functional role of this molecule in neuronal motility.
Resumo:
Recent evidence suggests that insulin may influence many brain functions. It is known that intracerebroventricular (icv) injection of nondiabetogenic doses of streptozotocin (STZ) can damage insulin receptor signal transduction. In the present study, we examined the functional damage to the brain insulin receptors on central mechanisms regulating glomerular filtration rate and urinary sodium excretion, over four periods of 30 min, in response to 3 µl insulin or 0.15 NaCl (vehicle) injected icv in STZ-treated freely moving Wistar-Hannover rats (250-300 g). The icv cannula site was visually confirmed by 2% Evans blue infusion. Centrally administered insulin (42.0 ng/µl) increased the urinary output of sodium (from 855.6 ± 85.1 to 2055 ± 310.6 delta%/min; N = 11) and potassium (from 460.4 ± 100 to 669 ± 60.8 delta%/min; N = 11). The urinary sodium excretion response to icv insulin microinjection was markedly attenuated by previous central STZ (100 µg/3 µl) administration (from 628 ± 45.8 to 617 ± 87.6 delta%/min; N = 5) or by icv injection of a dopamine antagonist, haloperidol (4 µg/3 µl) (from 498 ± 39.4 to 517 ± 73.2 delta%/min; N = 5). Additionally, insulin-induced natriuresis occurred by increased post-proximal tubule sodium rejection, despite an unchanged glomerular filtration rate. Excluding the possibility of a direct action of STZ on central insulin receptor-carrying neurons, the current data suggest that the insulin-sensitive response may be processed through dopaminergic D1 receptors containing neuronal pathways.
Resumo:
Gastric antral dysmotility has been implicated in the pathogenesis of indomethacin-induced gastric damage, but the relationship between gastric motor abnormalities and mucosal lesions has not been extensively studied. We investigated whether changes in gastric tone and gastric retention correlate with mucosal lesions and neutrophil migration in indomethacin-induced gastric damage in rats. Indomethacin, either 5 or 20 mg/kg (INDO-5 and INDO-20), was instilled into the stomach, and then gastric damage, neutrophil migration, gastric tone and gastric retention were assessed 1 or 3 h later. Gastric damage was calculated as the sum of the lengths of all mucosal lesions, and neutrophil migration was measured by assaying myeloperoxidase activity. Gastric tone was determined by a plethysmometric method, and gastric retention of either saline or Sustacal® was evaluated by a scintigraphic method. Gastric damage was detectable 3 h after either INDO-5 or INDO-20, but not after 1 h. Neutrophil migration was significantly higher 3 h after INDO-20 as compared with INDO-5 or control group, but not after 1 h. Values of gastric tone 1 and 3 h after either INDO-5 (1 h = 1.73 ± 0.07 ml; 3 h = 1.87 ± 0.03 ml) or INDO-20 (1 h = 1.70 ± 0.02 ml; 3 h = 1.79 ± 0.03 ml) were significantly lower than in controls (1 h = 1.48 ± 0.05 ml; 3 h = 1.60 ± 0.06 ml). Gastric retention of saline was higher 1 h after INDO-5 (58.9 ± 3.3%) or INDO-20 (56.1 ± 3.1%) compared to control (45.5 ± 1.7%), but not after 3 h. There were no differences concerning gastric retention of Sustacal® between the various groups. Indomethacin induced decreased gastric tone and delayed gastric emptying, which precede mucosal lesion and neutrophil infiltration. These results indicate that there is no relationship between these gastric motor abnormalities and mucosal lesion in indomethacin-induced gastropathy.
Resumo:
Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and the double mutant) were subjected to H2O2 stress in the stationary phase. The highest sensitivity was observed in the sod2delta mutant, while the sod1deltasod2delta double mutant was not sensitive. Sod mutants had lower catalase activity (44%) than wild-type cells, independent of H2O2 stress. Untreated cells of sod1deltasod2delta double mutants showed increased glutathione peroxidase activity (126%), while sod1delta had lower activity (77%) than the wild type. Glutathione levels in sod1delta were increased (200-260%) after exposure to various H2O2 concentrations. In addition, the highest malondialdehyde levels could be observed without H2O2 treatment in sod1delta (167%) and sod2delta (225%) mutants. In contrast, the level of malondialdehyde in the sod1deltasod2delta double mutant was indistinguishable from that of the wild type. These results suggest that resistance to H2O2 by sod1deltasod2delta cells depends on the induction of glutathione peroxidase and is independent of catalase, and that glutathione is a primary antioxidant in the defense against H2O2 in stationary phase sod1delta mutants.
Resumo:
We investigated the level of expression of neuronal nitric oxide synthase (nNOS) in the retinorecipient layers of the rat superior colliculus during early postnatal development. Male and female Lister rats ranging in age between the day of birth (P0) and the fourth postnatal week were used in the present study. Two biochemical methods were used, i.e., in vitro measurement of NOS specific activity by the conversion of [³H]-arginine to [³H]-citrulline, and analysis of Western blotting immunoreactive bands from superior colliculus homogenates. As revealed by Western blotting, very weak immunoreactive bands were observed as early as P0-2, and their intensity increased progressively at least until P21. The analysis of specific activity of NOS showed similar results. There was a progressive increase in enzymatic activity until near the end of the second postnatal week, and a nonsignificant tendency to an increase until the end of the third week was also observed. Thus, these results indicated an increase in the amount of nNOS during the first weeks after birth. Our results confirm and extend previous reports using histochemistry for NADPH-diaphorase and immunocytochemistry for nNOS, which showed a progressive increase in the number of stained cells in the superficial layers during the first two postnatal weeks, reaching an adult pattern at the end of the third week. Furthermore, our results suggested that nNOS is present in an active form in the rat superior colliculus during the period of refinement of the retinocollicular pathway.
Resumo:
It has been suggested that iron overload may be carcinogenic. In the present study, we evaluated the effect of plasma and prostate carotenoid concentration on oxidative DNA damage in 12-week-old Wistar rats treated with intraperitoneal (ip) ferric nitrilotriacetate (Fe-NTA) (10 mg Fe/kg). Plasma ß-carotene and lycopene concentrations were measured as a function of time after ip injection of carotenoids (10 mg kg-1 day-1 ß-carotene or lycopene) in rats. The highest total plasma concentration was reached 3 and 6 h after ip injection of lycopene or ß-carotene, respectively. After 5 days of carotenoid treatment, lycopene and ß-carotene were present in the 0.10-0.51 nmol/g wet tissue range in the prostate. Using a sensitive method to detected 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) by HPLC/EC, the level of 8-oxodGuo in rat prostate DNA was significantly higher (6.3 ± 0.6 residues/10(6) dGuo) 3 h after Fe-NTA injection compared with control rats (1.7 ± 0.3 residues/10(6) dGuo). Rats supplemented with lycopene or ß-carotene for 5 days prior to Fe-NTA treatment showed a reduction of about 70% in 8-oxodGuo levels to almost control levels. Compared with control rats, the prostate of Fe-NTA-treated animals showed a 78% increase in malondialdehyde accumulation. Lycopene or ß-carotene pre-treatment almost completely prevented lipid damage. Epidemiological studies have suggested a lower risk of prostate cancer in men reporting a higher consumption of tomato products. However, before associating this effect with tomato sauce constituents, more information is required. The results described here may contribute to the understanding of the protective effects of carotenoids against iron-induced oxidative stress.
Resumo:
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Resumo:
Over the last decades, the incidence of ultraviolet B (UVB)-related skin problems has been increasing. Damages induced by UVB radiation are related to mutations that occur as a result of direct DNA damage and/or the production of reactive oxygen species. We investigated the anti-oxidant effects of a Polygonum multiflorum thumb extract against skin damage induced by UVB irradiation. Female SKH-1 hairless mice were divided into three groups: control (N = 7), distilled water- (N = 10), and P. multiflorum extract-treated (PM, N = 10) groups. The PM (10 g) was extracted with 100 mL distilled water, cryo-dried and 9.8 g was obtained. The animals received a topical application of 500 µL distilled water or PM extract (1, 2, 4, 8, and 16%, w/v, dissolved in distilled water) for 30 min after UVB irradiation (wavelength 280-320 nm, 300 mJ/cm²; 3 min) of the dorsal kin for 14 days, and skin immunohistochemistry and Cu,Zn-superoxide dismutase (SOD1) activity were determined. SOD1 immunoreactivity, its protein levels and activities in the skin were significantly reduced by 70% in the distilled water-treated group after UVB irradiation compared to control. However, in the PM extract-treated groups, SOD1 immunoreactivity and its protein and activity levels increased in a dose-dependent manner (1-16%, w/v, PM extract) compared to the distilled water-treated group. SOD1 protein levels and activities in the groups treated with 8 and 16%, w/v, PM extract recovered to 80-90% of the control group levels after UVB. These results suggest that PM extract strongly inhibits the destruction of SOD1 by UV radiation and probably contains anti-skin photoaging agents.
Resumo:
There are few studies of ochratoxin A (OTA) genotoxicity in experimental animals and the results obtained with cell cultures are inconsistent, although the carcinogenic potential of OTA for the kidney of experimental animals has been well established. We studied the genotoxic potential of OTA in the kidney of adult female Wistar rats (5 in each group) treated intraperitoneally with OTA (0.5 mg kg body weight-1 day-1 for 7, 14, and 21 days) measuring DNA mobility on agarose gel stained with ethidium-bromide using standard alkaline single-cell gel electrophoresis (comet assay). Negative control animals were treated with solvent (Tris buffer, 1.0 mg/kg) and positive control animals were treated with methyl methanesulfonate (40 mg/kg) according to the same schedule. OTA concentrations in plasma and kidney homogenates in 7-, 14-, and 21-day treated animals were 4.86 ± 0.53, 7.52 ± 3.32, 7.85 ± 2.24 µg/mL, and 0.87 ± 0.09, 0.99 ± 0.06, 1.09 ± 0.15 µg/g, respectively. In all OTA-treated groups, the tail length, tail intensity, and tail moment in kidney tissue were significantly higher than in controls (P < 0.05). The tail length and tail moment were higher after 14 days than after 7 days of treatment (P < 0.05), and still higher after 21 days (P < 0.05). The highest tail intensity was observed in animals treated for 21 days, and it differed significantly from animals treated for 7 and 14 days (P < 0.05). OTA concentrations in plasma and kidney tissue increased steadily and OTA concentration in kidney tissue strongly correlated with tail intensity and tail moment values. These results confirm the genotoxic potential of OTA, and show that the severity of DNA lesions in kidney correlates with OTA concentration.
Resumo:
Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.
Resumo:
Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.