973 resultados para Nahant Harbor
Resumo:
Abstract Background Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae) known to carry a diversity of symbiotically-associated Proteobacteria. Results A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n = 7), Edessa meditabunda (n = 5), Loxa deducta (n = 4) and Pellaea stictica (n = 3) were all associated with three families. Piezodorus guildini (n = 3) and Nezara viridula (n = 3) had the lowest diversity, being associated with two (Propionibacteriaceae and Mycobacteriaceae) and one (Streptomyceataceae) families, respectively. Corynebacteriaceae and Mycobacteriaceae were the most common families with phylotypes from three different insect species each one. Conclusions Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the stinkbugs biology remain unknown.
Resumo:
Neuromyelitis optica (NMO) has been traditionally described as the association of recurrent or bilateral optic neuritis and longitudinally extensive transverse myelitis (LETM). Identification of aquaporin-4 antibody (AQP4-IgG) has deeply changed the concept of NMO. A spectrum of NMO disorders (NMOSD) has been formulated comprising conditions which include both AQP4-IgG seropositivity and one of the index events of the disease (recurrent or bilateral optic neuritis and LETM). Most NMO patients harbor asymptomatic brain MRI lesions, some of them considered as typical of NMO. Some patients with aquaporin-4 autoimmunity present brainstem, hypothalamic or encephalopathy symptoms either preceding an index event or occurring isolatedly with no evidence of optic nerve or spinal involvement. On the opposite way, other patients have optic neuritis or LETM in association with typical lesions of NMO on brain MRI and yet are AQP4-IgG seronegative. An expanded spectrum of NMO disorders is proposed to include these cases.
Resumo:
Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10³ in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.
Resumo:
OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormonereleasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormonereceptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
The liver was among the first organs in which connexin proteins have been identified. Hepatocytes harbor connexin32 and connexin26, while non-parenchymal liver cells typically express connexin43. Connexins give rise to hemichannels, which dock with counterparts on adjacent cells to form gap junctions. Both hemichannels and gap junctions provide pathways for communication, via paracrine signaling or direct intercellular coupling, respectively. Over the years, hepatocellular gap junctions have been shown to regulate a number of liver-specific functions and to drive liver cell growth. In the last few years, it has become clear that connexin hemichannels are involved in liver cell death, particularly in hepatocyte apoptosis. This also holds true for hemichannels composed of pannexin1, a connexin-like protein recently identified in the liver. Moreover, pannexin1 hemichannels are key players in the regulation of hepatic inflammatory processes. The current paper provides a concise overview of the features of connexins, pannexins and their channels in the liver.
Resumo:
Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
[EN] Sediment materials play an important role on the dynamic response of large structures where fluid-soil-structure interaction is relevant and materials of that kind are present. Dam-reservoir systems and harbor structures are examples of civil engineering constructions where those effects are significant.
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes Virus aus der Familie der Flaviviridae. Es besitzt ein Plusstrang-RNA Genom von ca. 9600 Nukleotiden Länge, das nur ein kodierendes Leseraster besitzt. Das Genom wird am 5’ und 3’ Ende von nicht-translatierten Sequenzen (NTRs) flankiert, welche für die Translation und vermutlich auch Replikation von Bedeutung sind. Die 5’ NTR besitzt eine interne Ribosomeneintrittsstelle (IRES), die eine cap-unabhängige Translation des ca. 3000 Aminosäure langen viralen Polyproteins erlaubt. Dieses wird ko- und posttranslational von zellulären und viralen Proteasen in 10 funktionelle Komponenten gespalten. Inwieweit die 5’ NTR auch für die Replikation der HCV RNA benötigt wird, war zu Beginn der Arbeit nicht bekannt. Die 3’ NTR besitzt eine dreigeteilte Struktur, bestehend aus einer variablen Region, dem polyU/UC-Bereich und der sogenannten X-Sequenz, eine hochkonservierte 98 Nukleotide lange Region, die vermutlich für die RNA-Replikation und möglicherweise auch für die Translation benötigt wird. Die genuae Rolle der 3’ NTR für diese beiden Prozesse war zu Beginn der Arbeit jedoch nicht bekannt. Ziel der Dissertation war deshalb eine detaillierte genetische Untersuchung der NTRs hinsichtlich ihrer Bedeutung für die RNA-Translation und -Replikation. In die Analyse mit einbezogen wurden auch RNA-Strukturen innerhalb der kodierenden Region, die zwischen verschiedenen HCV-Genotypen hoch konserviert sind und die mit verschiedenen computer-basierten Modellen vorhergesagt wurden. Zur Kartierung der für RNA-Replikation benötigten Minimallänge der 5’ NTR wurde eine Reihe von Chimären hergestellt, in denen unterschiedlich lange Bereiche der HCV 5’ NTR 3’ terminal mit der IRES des Poliovirus fusioniert wurden. Mit diesem Ansatz konnten wir zeigen, dass die ersten 120 Nukleotide der HCV 5’ NTR als Minimaldomäne für Replikation ausreichen. Weiterhin ergab sich eine klare Korrelation zwischen der Länge der HCV 5’ NTR und der Replikationseffizienz. Mit steigender Länge der 5’ NTR nahm auch die Replikationseffizienz zu, die dann maximal war, wenn das vollständige 5’ Element mit der Poliovirus-IRES fusioniert wurde. Die hier gefundene Kopplung von Translation und Replikation in der HCV 5’ NTR könnte auf einen Mechanismus zur Regulation beider Funktionen hindeuten. Es konnte allerdings noch nicht geklärt werden, welche Bereiche innerhalb der Grenzen des IRES-Elements genau für die RNA-Replikation benötigt werden. Untersuchungen im Bereich der 3’ NTR ergaben, dass die variable Region für die Replikation entbehrlich, die X-Sequenz jedoch essentiell ist. Der polyU/UC-Bereich musste eine Länge von mindestens 11-30 Uridinen besitzen, wobei maximale Replikation ab einer Länge von 30-50 Uridinen beobachtet wurde. Die Addition von heterologen Sequenzen an das 3’ Ende der HCV-RNA führte zu einer starken Reduktion der Replikation. In den hier durchgeführten Untersuchungen zeigte keines der Elemente in der 3’ NTR einen signifikanten Einfluss auf die Translation. Ein weiteres cis aktives RNA-Element wurde im 3’ kodierenden Bereich für das NS5B Protein beschrieben. Wir fanden, dass Veränderungen dieser Struktur durch stille Punktmutationen die Replikation hemmten, welche durch die Insertion einer intakten Version dieses RNA-Elements in die variable Region der 3’ NTR wieder hergestellt werden konnte. Dieser Versuchsansatz erlaubte die genaue Untersuchung der für die Replikation kritischen Strukturelemente. Dadurch konnte gezeigt werden, dass die Struktur und die Primärsequenz der Loopbereiche essentiell sind. Darüber hinaus wurde eine Sequenzkomplementarität zwischen dem Element in der NS5B-kodierenden Region und einem RNA-Bereich in der X-Sequenz der 3’ NTR gefunden, die eine sog. „kissing loop“ Interaktion eingehen kann. Mit Hilfe von gezielten Mutationen konnten wir zeigen, dass diese RNA:RNA Interaktion zumindest transient stattfindet und für die Replikation des HCV essentiell ist.
Resumo:
The aim of this thesis is to provide a geochemical characterization of the Seehausen territory (a neighborhood) of Bremen, Germany. In this territory it is hosted a landfill of dredged sediments coming both from Bremerhaven (North See) and Bremen harbor (directly on the river Weser). For this reason this work has been focused also on possible impacts of the landfill on the groundwaters (shallow and deep aquifer). The Seehausen landfill uses the dewatering technique to manage the dredged sediments: incoming sediments are put into dewatering fields until they are completely dried (it takes almost a year). Then they are randomly sampled and analyzed: if the pollutants content is acceptable, sediments are treated with other materials and used instead of raw material for embankment, bricks, etc., otherwise they are disposed in the landfill. During this work it has been made a study of the natural geology and hydrogeology of the whole area of interest, especially because it is characterized by ancient natural salt deposits. Then, together with the Geological Survey of Bremen and the Harbor Authority of Bremen there have been identified all useful piezometers for a monitoring net around the landfill. During the sampling campaign there have been collected data of the principal anions and cations, physical parameters and stable water isotopes. Data analysis has been focused particularly on Cl, Na, SO4 and EC because these parameters might be helpful to attribute geochemical trends to the landfill or to a natural background. Furthermore dataloggers have been installed for a month in some piezometers and EC, pressure, dissolved oxygen and temperature data have been collected. Finally there has been made a deep comparison between current and historical data (1996 – 2011) and between old interpolation maps and current ones in order to see time trends of the aquifer geochemistry.
Resumo:
Sheet pile walls are one of the oldest earth retention systems utilized in civil engineering projects. They are used for various purposes; such as excavation support system, cofferdams, cut-off walls under dams, slope stabilization, waterfront structures, and flood walls. Sheet pile walls are one of the most common types of quay walls used in port construction. The worldwide increases in utilization of large ships for transportation have created an urgent need of deepening the seabed within port areas and consequently the rehabilitation of its wharfs. Several methods can be used to increase the load-carrying capacity of sheet-piling walls. The use of additional anchored tie rods grouted into the backfill soil and arranged along the exposed wall height is one of the most practical and appropriate solutions adopted for stabilization and rehabilitation of the existing quay wall. The Ravenna Port Authority initiated a project to deepen the harbor bottom at selected wharves. An extensive parametric study through the finite element program, PLAXIS 2D, version 2012 was carried out to investigate the enhancement of using submerged grouted anchors technique on the load response of sheet-piling quay wall. The influence of grout-ties area, length of grouted body, anchor inclination and anchor location were considered and evaluated due to the effect of different system parameters. Also a comparative study was conducted by Plaxis 2D and 3D program to investigate the behavior of these sheet pile quay walls in terms of horizontal displacements induced along the sheet pile wall and ground surface settlements as well as the anchor force and calculated factor of safety. Finally, a comprehensive study was carried out by using different constitutive models to simulate the mechanical behavior of the soil to investigate the effect of these two models (Mohr-Coulomb and Hardening Soil) on the behavior of these sheet pile quay walls.
Resumo:
Many bivalve species possess two distinct mtDNA lineages, called F and M, respectively inherited maternally and paternally: this system is called doubly uniparental inheritance (DUI). The main experimental project of my PhD was the quantification of the two mtDNAs during the development of the DUI species Ruditapes philippinarum, from early embryos to sub-adults, using Real-Time qPCR. I identified the time interval in which M mtDNA is lost from female individuals, while it is retained in males (which are heteroplasmic through all of their life cycle). The results also suggested absence of mtDNA replication during early embryogenesis, a process constituting a bottleneck that highly reduces the copy number of mtDNA molecules in cells of developing larvae. In males this bottleneck may produce cells homoplasmic for M mtDNA, and could be considered as a first step of the segregation of M in the male germ line. Another finding was the characterization, in young clams approaching the first reproductive season, of a significant boost in copy number of F mtDNA in females and of M in males. Given the age of animals in which this mtDNA-specific growth was observed, the finding could probably be the outcome of the first round of gonads and gametes production. Other lines of research included the characterization of the unassigned regions in mt genomes of DUI bivalves. These regions can harbor signals involved in the control of replication and/or transcription of the mtDNA molecule, as well as additional open reading frames (ORFs) not related to oxidative phosphorylation. These features in DUI species could be associated to the maintenance of separate inheritance routes for the two mtDNAs. Additional ORFs are also found in other animal mt genomes: I summarized the presence of gene duplications as a co-author in a review focusing on animal mt genomes with unusual gene content.
Resumo:
This thesis presents a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The new ANN has been specifically developed in order to provide managers and scientists with a tool that can be efficiently used for design purposes. The development of this ANN started with the preparation of a new extended and homogeneous database that collects all the available tests reporting at least one of the three parameters, for a total amount of 16’165 data. The variety of structure types and wave attack conditions in the database includes smooth, rock and armour unit slopes, berm breakwaters, vertical walls, low crested structures, oblique wave attacks. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the training parameters of the ANN. Each of the selected 15 input parameters represents a physical aspect of the wave-structure interaction process, describing the wave attack (wave steepness and obliquity, breaking and shoaling factors), the structure geometry (submergence, straight or non-straight slope, with or without berm or toe, presence or not of a crown wall), or the structure type (smooth or covered by an armour layer, with permeable or impermeable core). The advanced ANN here proposed provides accurate predictions for all the three parameters, and demonstrates to overcome the limits imposed by the traditional formulae and approach adopted so far by some of the existing ANNs. The possibility to adopt just one model to obtain a handy and accurate evaluation of the overall performance of a coastal or harbor structure represents the most important and exportable result of the work.
Resumo:
Die Winden-Glasflügelzikade Hyalesthes obsoletus (Cixiidae, Glasflügelzikaden) nutzte in Deutschland ursprünglich die Ackerwinde Convolvulus arvensis als Wirtspflanze, allerdings nahm in den letzten zwei Dekaden die Abundanz auf der Großen Brennnessel Urtica dioica stark zu, zusammen mit der Inzidenz der Schwarzholzkrankheit Bois noir auf Weinreben. Bois noir wird durch ein Phytoplasma verursacht, das durch H. obsoletus von C. arvensis und U. dioica auf Weinreben übertragen wird. Es stellte sich daher die Frage, ob H. obsoletus Wirtsrassen entwickelt hat, die möglicherweise die Bois noir-Epidemiologie beeinflussen. In der vorliegenden Studie wurden folgende Fragestellungen bearbeitet: rn(1) Gibt es in Deutschland und Europa genetisch unterscheidbare Wirtsrassen von H. obsoletus auf den beiden Wirtspflanzen C. arvensis und U. dioica? Es wurden sieben Mikrosatellitenmarker entwickelt und etabliert, um H. obsoletus Populationen aus Deutschland und Europa genetisch zu analysieren. Es zeigte sich eine deutliche Differenzierung zwischen Populationen von beiden Wirtspflanzen in Deutschland, jedoch nicht in den historischen Ursprungsgebieten der deutschen Populationen, in der Schweiz, Italien oder Slovenien.rn(2) Wo sind die deutschen Wirtsrassen von H. obsoletus entstanden? Eine Einwanderung von südlichen, bereits an U. dioica angepassten Individuen stand einer lokalen Wirtsrassenevolution gegenüber. Die engere genetische Verwandtschaft der deutschen Population auf U. dioica zu denen auf C. arvensis, im Vergleich zu den übrigen Populationen auf U. dioica, impliziert einen lokalen Prozess im nördlichen Verbreitungsgebiet. Eine Immigration südlicher Tiere scheint nicht zur Diversifizierung beigetragen zu haben, führte aber möglicherweise einen U. dioica-spezifischen Phytoplasma-Stamm ein. Durch Wirtsrassenevolution entwickelten sich spezifische, vektorbasierte epidemiologische Kreisläufe der Schwarzholzkrankheit Bois noir. rn(3) Welche Präferenzen zeigen die beiden Wirtsrassen von H. obsoletus für die Wirtspflanzen C. arvensis und U. dioica und unterscheiden sich diese? Die Präferenz von H. obsoletus aus beiden deutschen Wirtsrassen in Bezug auf den Geruch der Wirtspflanzen wurde in einem Y-Olfaktometer untersucht, zusätzlich wurden beide Pflanzen direkt zur Wahl gestellt. Bei beiden Untersuchungen zeigte die Population von C. arvensis eine signifikante Präferenz für ihre native Wirtspflanze. Die Population von U. dioica wies dagegen keine Präferenz für den Geruch einer Wirtspflanze auf, bevorzugte im direkten Test jedoch signifikant ihre native Wirtspflanze. Dies weist darauf hin, dass die Anpassung an den „neuen“ Wirt noch nicht vollständig ist.rn