976 resultados para NEUTRON BEAMS
Resumo:
We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
We investigate the (PF2)-P-3 neutron superfluidity in beta-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V-18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the (PF2)-P-3 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
In this work, the neutron radiation field at Heavy Ion Research Facility in Lanzhou (HIRFL) was investigated. Total neutron yields, spectra and angular distributions in the bombardment of various thick targets by C-12 and O-18 ions with energies up to 75 MeV/u were obtained using the activation method. The neutron dose equivalent rates of 60 MeV/u O-18 on various thick targets at different angles were measured with a modified A-B remmeter. Our results are compared with those of other reports.
Resumo:
The beta-delayed neutron and gamma spectra of neutron-rich nucleus N-21 using beta-gamma and beta-n coincidence measurements were presented in this paper. Thirteen new neutron groups ranging from 0.28 MeV to 4.98 MeV and with a total branching ratio 88.7 +/- 4.2% were observed. One gamma transition among the excited states of O-21 and foury transitions among the excited states of O-20 were identified in the beta decay chain of N-21. The ungated half-life of 83.8 +/- 2.1 ms was also determined for N-21.
Resumo:
Using the isospin- and momentum-dependent hadronic transport model 1BUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction Systems Sn-132+Sn-124, Sn-124+Sn-112 and Sn-112+(112)Su which are of the same total proton number but, different isospin asymmetry. We find that, the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases.
Resumo:
The neutron (PF2)-P-3 pairing gap in pure neutron matter, neutron (PF2)-P-3 gap and neutron-proton (SD1)-S-3 gap in symmetric nuclear matter have been studied by using the Brueckner-Hartree-Fock(BHF) approach and the BCS theory. We have concentrated on investigating and discussing the three-body force effect on the nucleon superfluidity. The calculated results indicate that the three-body force enhances remaxkably the (PF2)-P-3 superfluidity in neutron matter. It also enhances the (PF2)-P-3 superfluidity in symmetric nuclear matter and its effect increases monotonically as the Fermi-momentum k(F) increases, whereas the three-body force is shown to influence only weakly the neutron-proton (SD1)-S-3 gap in symmetric nuclear matter.
Resumo:
Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).
Resumo:
The neutron-rich nucleus Li-11 is separated by the radioactive ion beam line RIBLL at HIRFL from the breakup of 50MeV/u C-13 on Be target. The total reaction cross sections for Li-11 at energies range from 25 to 45MeV/u on Si target have been measured by using the transmission method. The experimental data at high and low energies can be fitted well by Glauber model using two Gauss density distribution. The matter radius of Li-11 was also deduced.
Resumo:
The neutron (PF2)-P-3 pairing gap in pure neutron matter has been studied by using the Brueckner-Hartree-Fock( BHF) approach and the BCS theory. We have concentrated our attention on investigating the three-body force effect on the neutron superfluidity in the (PF2)-P-3 channel. The calculated results indicate that the three-body force enhances remarkably the (PF2)-P-3 superfluidity in neutron matter. When adopting the BHF single-particle spectrum, the three-body force turns out to increase the maximum value of the pairing gap from about 0.22 MeV to about 0.5 MeV.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.
Resumo:
The cooling storage ring, to be built at Lanzhou, will be able to deliver heavy ion beams up to uranium up to 0.52 GeV/u. It is expected to make considerable contribution to nuclear EOS study in the high net baryon-density region. With a relativistic transport model, we performed simulations for U+U collisions with different orientations. It is shown that by combining the forward neutron multiplicity and an event-wise elliptic flow selection, it is possible to identify the tip - tip and body - body head-on collisions. The effective identification of these two extreme configurations will allow us to study the EOS at the highest baryon density in the U+U collisions.
Resumo:
The proton and neutron S-1(0), pairing gaps and their isospin dependence in isospin asymmetric nuclear matter have been studied by the isospin dependent Brueckner-Hartree-Fock approach and the BCS theory. We have focused on investigating and discussing the effect of three-body force. The calculated results indicate that as the isospin asymmetry increases, the density range of the S-1(0) neutron superfluidity is narrowed slightly and the maximum value of the neutron pairing gap increases 9 while the density domain for the proton superfluidity enlarges rapidly and the peak value of the proton gap decreases remarkably. The three-body force turns out to affect only weakly the neutron S-1(0) superfluidity and its isospin dependence, i. e., it leads to a small reduction of the neutron S-1(0) paring gap. However, the three-body force not only reduces largely the strength of the proton S-1(0) gaps at high densities in highly asymmetric nuclear matter but also suppresses strongly the density domain for the proton S-1(0) superfluidity phase.
Resumo:
The light calibration system is one of the key components of Neutron Wall detector. It is used to calibrate the electronics and to monitor the long-term stability of the detector modules. With the detaile investigations, a calibration system with high-power LED (3W) driven by the fast pulses has been carried out. It is also tested together with the detector module of the Neutron Wall and the result of the preliminary calibration demonstrates that it fulfills the needs. It's a new design proposal to the light calibration system of the fast scintillator detector.
Resumo:
We investigate the S-1(0) neutron and proton superfluidity in isospin-asymmetric nuclear matter. We have concentrated on the isospin dependence of the pairing gaps and the effect of a microscopic three-body force. It is found that as the isospin asymmetry goes higher, the neutron S-1(0) superfluid phase shrinks gradually to a smaller density domain, whereas the proton one extends rapidly to a much wider density domain. The three-body force turns out to weaken the neutron S-1(0) superfluidity slightly, but it suppresses strongly the proton S-1(0) superfluidity at high densities in nuclear matter with large isospin asymmetry.
Resumo:
We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.