963 resultados para NETWORK REDUCTION
Resumo:
This project developed a quantitative method for determining the quality of the surgical alignment of the bone fragments after an ankle fracture. The research examined the feasibility of utilising MRI-based bone models versus the gold standard CT-based bone models in order to reduce the amount of ionising radiation the patient is exposed to. In doing so, the thesis reports that there is potential for MRI to be used instead of CT depending on the scanning parameters used to obtain the medical images, the distance of the implant relative to the joint surface, and the implant material.
Resumo:
Efficient yet inexpensive electrocatalysts for oxygen reduction reaction (ORR) are an essential component of renewable energy devices, such as fuel cells and metal-air batteries. We herein interleaved novel Co3O4 nanosheets with graphene to develop a first ever sheet-on-sheet heterostructured electrocatalyst for ORR, whose electrocatalytic activity outperformed the state-of-the-art commercial Pt/C with exceptional durability in alkaline solution. The composite demonstrates the highest activity of all the nonprecious metal electrocatalysts, such as those derived from Co3O4 nanoparticle/nitrogen-doped graphene hybrids and carbon nanotube/nanoparticle composites. Density functional theory (DFT) calculations indicated that the outstanding performance originated from the significant charge transfer from graphene to Co3O4 nanosheets promoting the electron transport through the whole structure. Theoretical calculations revealed that the enhanced stability can be ascribed to the strong interaction generated between both types of sheets.
Resumo:
While enhanced cybersecurity options, mainly based around cryptographic functions, are needed overall speed and performance of a healthcare network may take priority in many circumstances. As such the overall security and performance metrics of those cryptographic functions in their embedded context needs to be understood. Understanding those metrics has been the main aim of this research activity. This research reports on an implementation of one network security technology, Internet Protocol Security (IPSec), to assess security performance. This research simulates sensitive healthcare information being transferred over networks, and then measures data delivery times with selected security parameters for various communication scenarios on Linux-based and Windows-based systems. Based on our test results, this research has revealed a number of network security metrics that need to be considered when designing and managing network security for healthcare-specific or non-healthcare-specific systems from security, performance and manageability perspectives. This research proposes practical recommendations based on the test results for the effective selection of network security controls to achieve an appropriate balance between network security and performance
Resumo:
The concept of big data has already outperformed traditional data management efforts in almost all industries. Other instances it has succeeded in obtaining promising results that provide value from large-scale integration and analysis of heterogeneous data sources for example Genomic and proteomic information. Big data analytics have become increasingly important in describing the data sets and analytical techniques in software applications that are so large and complex due to its significant advantages including better business decisions, cost reduction and delivery of new product and services [1]. In a similar context, the health community has experienced not only more complex and large data content, but also information systems that contain a large number of data sources with interrelated and interconnected data attributes. That have resulted in challenging, and highly dynamic environments leading to creation of big data with its enumerate complexities, for instant sharing of information with the expected security requirements of stakeholders. When comparing big data analysis with other sectors, the health sector is still in its early stages. Key challenges include accommodating the volume, velocity and variety of healthcare data with the current deluge of exponential growth. Given the complexity of big data, it is understood that while data storage and accessibility are technically manageable, the implementation of Information Accountability measures to healthcare big data might be a practical solution in support of information security, privacy and traceability measures. Transparency is one important measure that can demonstrate integrity which is a vital factor in the healthcare service. Clarity about performance expectations is considered to be another Information Accountability measure which is necessary to avoid data ambiguity and controversy about interpretation and finally, liability [2]. According to current studies [3] Electronic Health Records (EHR) are key information resources for big data analysis and is also composed of varied co-created values [3]. Common healthcare information originates from and is used by different actors and groups that facilitate understanding of the relationship for other data sources. Consequently, healthcare services often serve as an integrated service bundle. Although a critical requirement in healthcare services and analytics, it is difficult to find a comprehensive set of guidelines to adopt EHR to fulfil the big data analysis requirements. Therefore as a remedy, this research work focus on a systematic approach containing comprehensive guidelines with the accurate data that must be provided to apply and evaluate big data analysis until the necessary decision making requirements are fulfilled to improve quality of healthcare services. Hence, we believe that this approach would subsequently improve quality of life.
Resumo:
The reduction of meso-formyl derivatives of 5,15-diaryl- and 5,10,15-triphenylporphyrin (and their nickel(II) complexes) to the corresponding meso-methyl porphyrins is achieved in high yield by microwave heating of the substrate in dimethylformamide (DMF) in the presence of acids such as trifluoroacetic acid, or even just with added water. The reactions are complete in less than 30 min at 250 °C. The reaction is strongly suppressed in very dry DMF in the absence of added acid. The meso-hydroxymethyl porphyrins are also reduced to the methyl derivatives, suggesting the primary alcohols may be intermediates in the exhaustive reduction. UV-visible spectra taken at intervals during reaction at 240 °C indicated that at least one other intermediate is present, but it was not identified. In d7-DMF, the methylporphyrin isolated was mainly Por-CD2H, showing that both of the added hydrogens arise from the solvent, and not from the added water or acid.
Resumo:
Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.
Resumo:
Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the average degree exponent 〈λ〉 increases first and then decreases with the increase of Hurst index H of the associated FBMs; the relationship between H and 〈λ〉 can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e., the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension 〈dB〉 of recurrence networks decreases with the Hurst index H of the associated FBMs, and their dependence approximately satisfies the linear formula 〈dB〉≈2-H, which means that the fractal dimension of the associated recurrence network is close to that of the graph of the FBM. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5 possesses the strongest multifractality. In addition, the dependence relationships of the average information dimension 〈D(1)〉 and the average correlation dimension 〈D(2)〉 on the Hurst index H can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.
Resumo:
Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.
Resumo:
We investigate the terminating concept of BKZ reduction first introduced by Hanrot et al. [Crypto'11] and make extensive experiments to predict the number of tours necessary to obtain the best possible trade off between reduction time and quality. Then, we improve Buchmann and Lindner's result [Indocrypt'09] to find sub-lattice collision in SWIFFT. We illustrate that further improvement in time is possible through special setting of SWIFFT parameters and also through the combination of different reduction parameters adaptively. Our contribution also include a probabilistic simulation approach top-up deterministic simulation described by Chen and Nguyen [Asiacrypt'11] that can able to predict the Gram-Schmidt norms more accurately for large block sizes.
Resumo:
Bien Hoa Airbase was one of the bulk storage and supply facilities for defoliants during the Vietnam War. Environmental and biological samples taken around the airbase have elevated levels of dioxin. In 2007, a pre-intervention knowledge, attitude and practice (KAP) survey of local residents living in Trung Dung and Tan Phong wards was undertaken regarding appropriate strategies to reduce dioxin exposure. A risk reduction programme was implemented in 2008 and post-intervention KAP surveys were undertaken in 2009 and 2013 to evaluate the longer term impacts. Quantitative assessment was undertaken via a KAP survey in 2013 among 600 local residents randomly selected from the two intervention wards and one control ward (Buu Long). Eight in-depth interviews and two focus group discussions were also undertaken for qualitative assessment. Most programme activities had ceased and dioxin risk communication activities had not been integrated into local routine health education programmes; however, main results generally remained and were better than that in Buu Long. In total, 48.2% of households undertook measures to prevent exposure, higher than those in pre- and post-intervention surveys (25.8% and 39.7%) and the control ward (7.7%). Migration and the sensitive nature of dioxin issues were the main challenges for the programme's sustainability
Resumo:
The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.
Resumo:
This contribution is a long-term study of the evolving use of the organization-wide groupware in a service network. We are describing the practices related to organization-wide groupware in conjunction with local groupware-related practices and how they have proceeded since the organization was established. In the discussion of these practices we are focussing on issues such as: 1. tendencies for proliferation and integration, 2. local appropriations of a variety of systems, 3. creative appropriations, including the creation of a unique heterogeneous groupware fabric, 4. the design strategy of multiple parallel experimental use an; 5. the relation between disparate local meanings and successful computer supported cooperative practice. As an overarching theme we are exploring the explanatory value of the concepts of objectification and appropriation as compared to the concepts of design vs. use.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.