979 resultados para Muscle power
Resumo:
The aim of this work was to simulate the radionuclides dispersion in the surrounding area of a coal-fired power plant, operational during the last 25 years. The dispersion of natural radionuclides (236Ra, 232Th and 40K) was simulated by a Gaussian plume dispersion model with three different stability classes estimating the radionuclides concentration at ground level. Measurements of the environmen-tal activity concentrations were carried out by γ-spectrometry and compared with results from the air dispersion and deposition model which showed that the stabil-ity class D causes the dispersion to longer distances up to 20 km from the stacks.
Resumo:
Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
Resumo:
The use of a solar photovoltaic (PV) panel simulator can be a valued tool for the design and evaluation of the several components of a photovoltaic system. This simulator is based on power electronic converter controlled in such a way that will behave as a PV panel. Thus, in this paper a PV panel simulator based on a two quadrant DC/DC power converter is proposed. This topology will allow to achieve fast responses, like suddenly changes in the irradiation and temperature. To control the power converter it will be used a fast and robust sliding mode controller. Therefore, with the proposed system I-V curve simulation of a PV panel is obtained. Experimental results from a laboratory prototype are presented in order to confirm the theoretical operation.
Resumo:
The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.
Resumo:
This paper presents the design and implementation of direct power controllers for three-phase matrix converters (MC) operating as Unified Power Flow Controllers (UPFC). Theoretical principles of the decoupled linear power controllers of the MC-UPFC to minimize the cross-coupling between active and reactive power control are established. From the matrix converter based UPFC model with a modified Venturini high frequency PWM modulator, decoupled controllers for the transmission line active (P) and reactive (Q) power direct control are synthesized. Simulation results, obtained from Matlab/Simulink, are presented in order to confirm the proposed approach. Results obtained show decoupled power control, zero error tracking, and fast responses with no overshoot and no steady-state error.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This paper is on a simulation for offshore wind systems in deep water under cloud scope. The system is equipped with a permanent magnet synchronous generator and a full-power three-level converter, converting the electric energy at variable frequency in one at constant frequency. The control strategies for the three-level are based on proportional integral controllers. The electric energy is injected through a HVDC transmission submarine cable into the grid. The drive train is modeled by a three-mass model taking into account the resistant stiffness torque, structure and tower in the deep water due to the moving surface elevation. Conclusions are taken on the influence of the moving surface on the energy conversion. © IFIP International Federation for Information Processing 2015.
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.
Resumo:
RESUMO: Contexto: Indicadores fidedignos da composição corporal são importantes na orientação das estratégias nutricionais de recém-nascidos e pequenos lactentes submetidos a cuidados intensivos. O braço é uma região acessível para avaliar a composição corporal regional, pela medida dos seus compartimentos. A antropometria e a ultrassonografia (US) são métodos não invasivos, relativamente económicos, que podem ser usados à cabeceira do paciente na medição desses compartimentos, embora esses métodos não tenham ainda sido validados neste subgrupo etário. A ressonância magnética (RM) pode ser usada como método de referência na validação da medição dos compartimentos do braço. Objectivo: Validar em lactentes pré-termo, as medidas do braço por antropometria e por US. Métodos: Foi estudada uma coorte de recém-nascidos admitidos consecutivamente na unidade de cuidados intensivos neonatais, com 33 semanas de idade de gestação e peso adequado para a mesma, sem anomalias congénitas major e não submetidas a diuréticos ou oxigenoterapia no momento da avaliação. Nas vésperas da alta, foram efectuadas medições do braço, com ocultação, pelos métodos antropométrico, ultrassonográfico e RM. As medidas antropométricas directas foram: peso (P), comprimento (C), perímetro cefálico (PC), perímetro braquial (PB) e prega cutânea tricipital (PT). As área braquial total, área muscular (AM) e área adiposa foram calculadas pelos métodos de Jeliffee & Jeliffee e de Rolland-Cachera. Utilizando uma sonda PSH-7DLT de 7 Hz no ecógrafo Toshiba SSH 140A foram medidos os perímetros braquial e muscular e calculadas automaticamente as áreas braquial e muscular, sendo a área adiposa obtida por subtracção. Como método de referência foi utilizada a RM – Philips Gyroscan ACS-NT, Power-Track 1000 ®, 1.5 Tesla com uma antena de quadratura do joelho. Na análise estatística foram utilizados os métodos paramétricos e não paramétricos, conforme adequado. Resultados: Foram incluídas 30 crianças, nascidas com ( ±DP) 30.7 ±1.9 semanas de gestação, pesando 1380 ±325g, as quais foram avaliadas às 35.4 ±1.1 semanas de idade corrigida, quando pesavam 1786 ±93g. Nenhuma das medidas antropométricas, individualmente, constitui um indicador aceitável (r2 <0.5) das medições por RM. A melhor e mais simples equação alternativa encontrada é a que estima a AM (r2 = 0.56), derivada dos resultados da análise de regressão múltipla: AMRM = (P x 0.17) + (PB x 5.2) – (C x 6) – 150, sendo o P expresso em g, o C e o PB em cm. Nenhuma das medidas ultrassonográficas constitui um indicador aceitável (r2 <0.4) das medições por RM. Conclusões: A antropometria e as medidas ultrassonográficas do braço não são indicadores fidedignos da composição corporal regional em lactentes pré-termo, adequados para a idade de gestação.----------ABSTRACT: Background: Accurate predictors for body composition are valuable tools guiding nutritional strategies in infants needing intensive care. The upper-arm is a part of the body that is easily accessible and convenient for assessing the regional body composition, throughout the assessment of their compartments. Anthropometry and by ultrasonography (US) are noninvasive and relatively nonexpensive methods for bedside assessment of the upper-arm compartments. However, these methods have not yet been validated in infants. Magnetic resonance imaging (MRI) may be used as gold standard to validate the measurements of the upper-arm compartments. Objective: To validate the upper-arm measurements by anthropometry and by US in preterm infants. Methods: A cohort of neonates consecutively admitted at the neonatal intensive care unit, appropriate for gestational age, with 33 weeks, without major congenital abnormalities and not subjected to diuretics or oxygen therapy, was assessed. Before the discharge, the upper-arm was blindly measured by anthropometry, US and MRI. The direct anthropometric parameters measured were: weight (W), length (L), head circumference (HC), mid-arm circumference (MAC), and tricipital skinfold thickness. The arm area (AA), arm muscle area (AMA) and arm fat area were calculated applying the methods proposed by Jeliffee & Jeliffee and by Rolland-Cachera. Using the sonolayer Toshiba SSH 140A and the probe PSH-7DLT 7Hz, the arm and muscle perimeters were measured by US, the arm and muscle areas included were automatically calculated, and the fat area was calculated by subtraction. The MR images were acquired on a 1.5-T Philips Gyroscan ACS-NT, Power-Track 1000 scanner, and a knee coil was chosen for the upper-arm measurements. For statistical analysis parametric and nonparametric methods were used as appropriate. Results: Thirty infants born with ( ±SD) 30.7 ±1.9 weeks of gestational age and weighing 1380 ±325g were included in the study; they were assessed at 35.4 ±1.1 weeks of corrected age, weighing 1786 ±93g. None of the anthropometric measurements are individually acceptable (r2 <0.5) for prediction of the measurements obtained by MRI. The best and simple alternative equation found is the equation for prediction of the AMA (r2 = 0.56), derived from the results of multiple regression analysis: AMARM = (W x 0.17) + (MAC x 5.2) – (L x 6) – 150, being the W expressed in g, and L and MAC in cm. None of the ultrasonographic measurements are acceptable (r2 <0.5) predictors for the measurements obtained by MRI. Conclusions: The measurements of the upper-arm by anthropometry and by US are not accurate predictors for the regional body composition in preterm appropriate for gestational age infants.
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.
Resumo:
This paper proposes a wind speed forecasting model that contributes to the development and implementation of adequate methodologies for Energy Resource Man-agement in a distribution power network, with intensive use of wind based power generation. The proposed fore-casting methodology aims to support the operation in the scope of the intraday resources scheduling model, name-ly with a time horizon of 10 minutes. A case study using a real database from the meteoro-logical station installed in the GECAD renewable energy lab was used. A new wind speed forecasting model has been implemented and it estimated accuracy was evalu-ated and compared with a previous developed forecast-ing model. Using as input attributes the information of the wind speed concerning the previous 3 hours enables to obtain results with high accuracy for the wind short-term forecasting.
Resumo:
The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
Power systems have been through deep changes in recent years, namely due to the operation of competitive electricity markets in the scope the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new type of player that allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles (V2G) and consumers) to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players’ benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.