834 resultados para Multiple-regression Analysis
Resumo:
The effect of multiple sclerosis (MS) on the ability to identify emotional expressions in faces was investigated, and possible associations with patients’ characteristics were explored. 56 non-demented MS patients and 56 healthy subjects (HS) with similar demographic characteristics performed an emotion recognition task (ERT), the Benton Facial Recognition Test (BFRT), and answered the Hospital Anxiety and Depression Scale (HADS). Additionally, MS patients underwent a neurological examination and a comprehensive neuropsychological evaluation. The ERT consisted of 42 pictures of faces (depicting anger, disgust, fear, happiness, sadness, surprise and neutral expressions) from the NimStim set. An iViewX high-speed eye tracker was used to record eye movements during ERT. The fixation times were calculated for two regions of interest (i.e., eyes and rest of the face). No significant differences were found between MS and HC on ERT’s behavioral and oculomotor measures. Bivariate and multiple regression analyses revealed significant associations between ERT’s behavioral performance and demographic, clinical, psychopathological, and cognitive measures.
Resumo:
Em face das transformações impostas pela globalização da economia as organizações necessitam de se adaptar às novas exigências para se tornarem mais competitivas e consequentemente devem procurar um melhor relacionamento com os seus colaboradores, de forma a aumentar os seus níveis de satisfação no trabalho. Neste sentido, o presente estudo tem como objetivo determinar quais as dimensões de justiça organizacional que, num contexto do sistema de recompensas, são identificadas pelos trabalhadores e qual a sua influência na satisfação no trabalho. Para o efeito foi efetuada uma revisão de literatura sobre as temáticas em estudo, que permitiu a elaboração dos instrumentos de medida das diferentes dimensões de justiça organizacional, bem como da satisfação do trabalho. Para esta última temática foi utilizado um instrumento de medida sobejamente testado: o Job Satisfaction Survey de Spector (1985). Deste modo, nesta investigação foi aplicada uma metodologia descritiva quantitativa através de um questionário que integra as duas temáticas anteriormente referidas (justiça organizacional e satisfação no trabalho), que foi aplicado a cento e trinta e nove colaboradores na Sede da Fundação INATEL. Da análise dos coeficientes de regressão múltipla obtidos para as três dimensões de justiça organizacional (distributiva, procedimental e interaccional) verifica-se que a justiça distributiva revelou ser o preditor significativo da satisfação no trabalho. Já no que se refere às dimensões de justiça procedimental e justiça interaccional os resultados obtidos permitem concluir que estas dimensões não têm influência sobre a satisfação no trabalho.
Resumo:
Motivated by a matched case-control study to investigate potential risk factors for meningococcal disease amongst adolescents, we consider the analysis of matched case-control studies where disease incidence, and possibly other risk factors, vary with time of year. For the cases, the time of infection may be recorded. For controls, however, the recorded time is simply the time of data collection, which is shortly after the time of infection for the matched case, and so depends on the latter. We show that the effect of risk factors and interactions may be adjusted for the time of year effect in a standard conditional logistic regression analysis without introducing any bias. We also show that, if the time delay between data collection for cases and controls is constant, provided this delay is not very short, estimates of the time of year effect are approximately unbiased. In the case that the length of the delay varies over time, the estimate of the time of year effect is biased. We obtain an approximate expression for the degree of bias in this case. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society
Resumo:
We investigated patterns of bryophyte species richness and community structure, and their relation to roof variables, on thatched roofs of the Holnicote Estate, South Somerset. Thirty-two bryophyte species were recorded from 28 sampled roofs, including the globally rare and endangered thatch moss, Leptodontium gemmascens. Multiple regression analyses revealed that thatch age has a highly significant positive effect on the number of species present, accounting for nearly half the observed variation in species richness after removal of outliers. Aspect has a slight and marginally significant effect on species diversity (accounting for an additional 6% of variation), with north-facing samples having slightly more species. Age also has a significant impact on total bryophyte cover after removal of outlying observations. TWINSPAN analysis of bryophyte cover data suggests the existence of at least five discrete communities. Simple Discriminant Analyses indicate that these communities occupy different ecological subspaces as defined by the measured roof variables, with pitch, aspect and thatch age emerging as especially significant attributes. Contingency Analysis indicates that some communities are disfavoured by water reed as compared to wheat straw. The findings are significant for understanding the structure of bryophyte communities, for evaluating the effect of bryophyte cover on thatch performance, and for conservation of thatch communities, especially those harbouring rare species.
Resumo:
The recent global economic crisis is often associated with the development and pricing of mortgage-backed securities (i.e. MBSs) and underlying products (i.e. sub-prime mortgages). This work uses a rich database of MBS issues and represents the first attempt to price commercial MBSs (i.e. CMBSs) in the European market. Our results are consistent with research carried out in the US market and we find that bond-, mortgage-, real estate-related and multinational characteristics show different degrees of significance in explaining European CMBS spreads at issuance. Multiple linear regression analysis using a databank of CMBSs issued between 1997 and 2007 indicates a strong relationship with bond-related factors, followed by real estate and mortgage market conditions. We also find that multinational factors are significant, with country of issuance, collateral location and access to more liquid markets all being important in explaining the cost of secured funding for real estate companies. As floater coupon tranches tend to be riskier and exhibit higher spreads, we also estimate a model using this sub-set of data and results hold, hence reinforcing our findings. Finally, we estimate our model for both tranches A and B and find that real estate factors become relatively more important for the riskier investment products.
Resumo:
An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008) who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM) and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS) and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998), is used in several other models we provide some description of the problem and how it was fixed.
Resumo:
A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).
Resumo:
BACKGROUND: Genetic polymorphisms of transcription factor 7-like 2 (TCF7L2) have been associated with type 2 diabetes and BMI. OBJECTIVE: The objective was to investigate whether TCF7L2 HapA is associated with weight development and whether such an association is modulated by protein intake or by the glycemic index (GI). DESIGN: The investigation was based on prospective data from 5 cohort studies nested within the European Prospective Investigation into Cancer and Nutrition. Weight change was followed up for a mean (±SD) of 6.8 ± 2.5 y. TCF7L2 rs7903146 and rs10885406 were successfully genotyped in 11,069 individuals and used to derive HapA. Multiple logistic and linear regression analysis was applied to test for the main effect of HapA and its interaction with dietary protein or GI. Analyses from the cohorts were combined by random-effects meta-analysis. RESULTS: HapA was associated neither with baseline BMI (0.03 ± 0.07 BMI units per allele; P = 0.6) nor with annual weight change (8.8 ± 11.7 g/y per allele; P = 0.5). However, a previously shown positive association between intake of protein, particularly of animal origin, and subsequent weight change in this population proved to be attenuated by TCF7L2 HapA (P-interaction = 0.01). We showed that weight gain becomes independent of protein intake with an increasing number of HapA alleles. Substitution of protein with either fat or carbohydrates showed the same effects. No interaction with GI was observed. CONCLUSION: TCF7L2 HapA attenuates the positive association between animal protein intake and long-term body weight change in middle-aged Europeans but does not interact with the GI of the diet.
Resumo:
The objective of this study was to evaluate the association of PPARG coactivator1 alpha (PPARGC1A), peroxisome proliferator activated receptor gamma (PPARG), and uncoupling protein1 (UCP1) gene polymorphisms with the metabolic syndrome (MS) in an Asian Indian population. Nine common polymorphisms were genotyped via polymerase chain reaction restriction fragment length polymorphism and direct sequencing in 950 normal glucose-tolerant subjects and 550 type 2 diabetic subjects, chosen randomly from the Chennai Urban Rural Epidemiological Study, an ongoing population based study in Southern India. Among the 9 polymorphisms examined, only the Thr394Thr variant of the PPARGC1A gene was significantly associated with diabetes and obesity. The genotype frequency of GA of Thr394Thr variant was 16% (138/887) in the nonMS group and 22% (136/613) in the MS group, and this genotype frequency was significantly higher with MS both in males (p = 0.01) and females (p = 0.05), compared to the without-MS group. Logistic regression analysis revealed that the odds ratio for MS for the susceptible genotype GA of Thr394Thr was 1.411 [95% CI: 1.03-1.84, p = 0.012]. In the multiple logistic regression analysis, however, there was no association of this polymorphism as an independent factor with MS. Hence, the study shows that the polymorphisms in the PPARGC1A, PPARG and UCP1 genes are not associated with MS in Asian Indians.
Resumo:
This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.
Resumo:
An online national survey among the Spanish population (n = 602) was conducted to examine the factors underlying a person’s support for commitments to global climate change reductions. Multiple hierarchical regression analysis was conducted in four steps and a structural equations model was tested. A survey tool designed by the Yale Project on Climate Change Communication was applied in order to build scales for the variables introduced in the study. The results show that perceived consumer effectiveness and risk perception are determinant factors of commitment to mitigating global climate change. However, there are differences in the influence that other factors, such as socio-demographics, view of nature and cultural cognition, have on the last predicted variable.
Resumo:
We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.
Resumo:
The present study aims to contribute to an understanding of the complexity of lobbying activities within the accounting standard-setting process in the UK. The paper reports detailed content analysis of submission letters to four related exposure drafts. These preceded two accounting standards that set out the concept of control used to determine the scope of consolidation in the UK, except for reporting under international standards. Regulation on the concept of control provides rich patterns of lobbying behaviour due to its controversial nature and its significance to financial reporting. Our examination is conducted by dividing lobbyists into two categories, corporate and non-corporate, which are hypothesised (and demonstrated) to lobby differently. In order to test the significance of these differences we apply ANOVA techniques and univariate regression analysis. Corporate respondents are found to devote more attention to issues of specific applicability of the concept of control, whereas non-corporate respondents tend to devote more attention to issues of general applicability of this concept. A strong association between the issues raised by corporate respondents and their line of business is revealed. Both categories of lobbyists are found to advance conceptually-based arguments more often than economic consequences-based or combined arguments. However, when economic consequences-based arguments are used, they come exclusively from the corporate category of respondents.
Resumo:
We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with the Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 prediction skill, providing targets for model improvement.