867 resultados para Multi-scale modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the findings of using multi-agent based simulation model to evaluate the sawmill yard operations within a large privately owned sawmill in Sweden, Bergkvist Insjön AB in the current case. Conventional working routines within sawmill yard threaten the overall efficiency and thereby limit the profit margin of sawmill. Deploying dynamic work routines within the sawmill yard is not readily feasible in real time, so discrete event simulation model has been investigated to be able to report optimal work order depending on the situations. Preliminary investigations indicate that the results achieved by simulation model are promising. It is expected that the results achieved in the current case will support Bergkvist-Insjön AB in making optimal decisions by deploying efficient work order in sawmill yard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mirroring the paper versions exchanged between businesses today, electronic contracts offer the possibility of dynamic, automatic creation and enforcement of restrictions and compulsions on agent behaviour that are designed to ensure business objectives are met. However, where there are many contracts within a particular application, it can be difficult to determine whether the system can reliably fulfil them all; computer-parsable electronic contracts may allow such verification to be automated. In this paper, we describe a conceptual framework and architecture specification in which normative business contracts can be electronically represented, verified, established, renewed, etc. In particular, we aim to allow systems containing multiple contracts to be checked for conflicts and violations of business objectives. We illustrate the framework and architecture with an aerospace example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented work deals with the calibration of a 2D numerical model for the simulation of long term bed load transport. A settled basin along an alpine stream was used as a case study. The focus is to parameterise the used multi fractional transport model such that a dynamically balanced behavior regarding erosion and deposition is reached. The used 2D hydrodynamic model utilizes a multi-fraction multi-layer approach to simulate morphological changes and bed load transport. The mass balancing is performed between three layers: a top mixing layer, an intermediate subsurface layer and a bottom layer. Using this approach bears computational limitations in calibration. Due to the high computational demands, the type of calibration strategy is not only crucial for the result, but as well for the time required for calibration. Brute force methods such as Monte Carlo type methods may require a too large number of model runs. All here tested calibration strategies used multiple model runs utilising the parameterization and/or results from previous run. One concept was to reset to initial bed elevations after each run, allowing the resorting process to convert to stable conditions. As an alternative or in combination, the roughness was adapted, based on resulting nodal grading curves, from the previous run. Since the adaptations are a spatial process, the whole model domain is subdivided in homogeneous sections regarding hydraulics and morphological behaviour. For a faster optimization, the adaptation of the parameters is made section wise. Additionally, a systematic variation was done, considering results from previous runs and the interaction between sections. The used approach can be considered as similar to evolutionary type calibration approaches, but using analytical links instead of random parameter changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the architecture of an experimental multiparadigmatic programming environment is sketched, showing how its parts combine together with application modules in order to perform the integration of program modules written in different programming languages and paradigms. Adaptive automata are special self-modifying formal state machines used as a design and implementation tool in the representation of complex systems. Adaptive automata have been proven to have the same formal power as Turing Machines. Therefore, at least in theory, arbitrarily complex systems may be modeled with adaptive automata. The present work briefly introduces such formal tool and presents case studies showing how to use them in two very different situations: the first one, in the name management module of a multi-paradigmatic and multi-language programming environment, and the second one, in an application program implementing an adaptive automaton that accepts a context-sensitive language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil and around the world, oil companies are looking for, and expected development of new technologies and processes that can increase the oil recovery factor in mature reservoirs, in a simple and inexpensive way. So, the latest research has developed a new process called Gas Assisted Gravity Drainage (GAGD) which was classified as a gas injection IOR. The process, which is undergoing pilot testing in the field, is being extensively studied through physical scale models and core-floods laboratory, due to high oil recoveries in relation to other gas injection IOR. This process consists of injecting gas at the top of a reservoir through horizontal or vertical injector wells and displacing the oil, taking advantage of natural gravity segregation of fluids, to a horizontal producer well placed at the bottom of the reservoir. To study this process it was modeled a homogeneous reservoir and a model of multi-component fluid with characteristics similar to light oil Brazilian fields through a compositional simulator, to optimize the operational parameters. The model of the process was simulated in GEM (CMG, 2009.10). The operational parameters studied were the gas injection rate, the type of gas injection, the location of the injector and production well. We also studied the presence of water drive in the process. The results showed that the maximum vertical spacing between the two wells, caused the maximum recovery of oil in GAGD. Also, it was found that the largest flow injection, it obtained the largest recovery factors. This parameter controls the speed of the front of the gas injected and determined if the gravitational force dominates or not the process in the recovery of oil. Natural gas had better performance than CO2 and that the presence of aquifer in the reservoir was less influential in the process. In economic analysis found that by injecting natural gas is obtained more economically beneficial than CO2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been widely applied in the aeronautical field. However, composite processing, which uses unlocked molds, should be avoided in view of the tight requirements and also due to possible environmental contamination. To produce high performance structural frames meeting aeronautical reproducibility and low cost criteria, the Brazilian industry has shown interest to investigate the resin transfer molding process (RTM) considering being a closed-mold pressure injection system which allows faster gel and cure times. Due to the fibrous composite anisotropic and non homogeneity characteristics, the fatigue behavior is a complex phenomenon quite different from to metals materials crucial to be investigated considering the aeronautical application. Fatigue sub-scale specimens of intermediate modulus carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite were produced according to the ASTM 3039 D. Axial fatigue tests were carried out according to ASTM D 3479. A sinusoidal load of 10 Hz frequency and load ratio R = 0.1. It was observed a high fatigue interval obtained for NCF/RTM6 composites. Weibull statistical analysis was applied to describe the failure probability of materials under cyclic loads and fractures pattern was observed by scanning electron microscopy. (C) 2010 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To evaluate whether observed geographical shifts in the distribution of the blue-winged macaw (Primolius maracana) are related to ongoing processes of global climate change. This species is vulnerable to extinction and has shown striking range retractions in recent decades, withdrawing broadly from southern portions of its historical distribution. Its range reduction has generally been attributed to the effects of habitat loss; however, as this species has also disappeared from large forested areas, consideration of other factors that may act in concert is merited.Location Historical distribution of the blue-winged macaw in Brazil, eastern Paraguay and northern Argentina.Methods We used a correlative approach to test a hypothesis of causation of observed shifts by reduction of habitable areas mediated by climate change. We developed models of the ecological niche requirements of the blue-winged macaw, based on point-occurrence data and climate scenarios for pre-1950 and post-1950 periods, and tested model predictivity for anticipating geographical distributions within time periods. Then we projected each model to the other time period and compared distributions predicted under both climate scenarios to assess shifts of habitable areas across decades and to evaluate an explanation for observed range retractions.Results Differences between predicted distributions of the blue-winged macaw over the twentieth century were, in general, minor and no change in suitability of landscapes was predicted across large areas of the species' original range in different time periods. No tendency towards range retraction in the south was predicted, rather conditions in the southern part of the species' range tended to show improvement for the species.Main conclusions Our test permitted elimination of climate change as a likely explanation for the observed shifts in the distribution of the blue-winged macaw, and points rather to other causal explanations (e.g. changing regional land use, emerging diseases).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modal analysis is widely approached in the classic theory of power systems modelling. This technique is also applied to model multiconductor transmission lines and their self and mutual electrical parameters. However, this methodology has some particularities and inaccuracies for specific applications, which are not clearly described in the technical literature. This study provides a brief review on modal decoupling applied in transmission line digital models and thereafter a novel and simplified computational routine is proposed to overcome the possible errors embedded by the modal decoupling in the simulation/ modelling computational algorithm. © The Institution of Engineering and Technology 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.