962 resultados para Montagnais Indians -- Missions.
Resumo:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.
Resumo:
Recognizing the importance of good nutrition for physical and mental status, the Department of Defense asked the Institute of Medicine to guide the design of the nutritional composition of a ration for soldiers on short-term, high-stress missions. Nutrient Composition of Rations for Short-Term, High-Intensity Combat Operations considers military performance, health concerns, food intake, energy expenditure, physical exercise, and food technology issues. The success of military operations depends to a large extent on the physical and mental status of the individuals involved.
Resumo:
In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.
Resumo:
Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
INTRODUCTION: Breast milk fatty acids play a major role in infant development. However, no data have compared the breast milk composition of different ethnic groups living in the same environment. We aimed to (i) investigate breast milk fatty acid composition of three ethnic groups in Singapore and (ii) determine dietary fatty acid patterns in these groups and any association with breast milk fatty acid composition. MATERIALS AND METHODS: This was a prospective study conducted at a tertiary hospital in Singapore. Healthy pregnant women with the intention to breastfeed were recruited. Diet profile was studied using a standard validated 3-day food diary. Breast milk was collected from mothers at 1 to 2 weeks and 6 to 8 weeks postnatally. Agilent gas chromatograph (6870N) equipped with a mass spectrometer (5975) and an automatic liquid sampler (ALS) system with a split mode was used for analysis. RESULTS: Seventy-two breast milk samples were obtained from 52 subjects. Analysis showed that breast milk ETA (Eicosatetraenoic acid) and ETA:EA (Eicosatrienoic acid) ratio were significantly different among the races (P = 0.031 and P = 0.020), with ETA being the highest among Indians and the lowest among Malays. Docosahexaenoic acid was significantly higher among Chinese compared to Indians and Malays. No difference was demonstrated in n3 and n6 levels in the food diet analysis among the 3 ethnic groups. CONCLUSIONS: Differences exist in breast milk fatty acid composition in different ethnic groups in the same region, although no difference was demonstrated in the diet analysis. Factors other than maternal diet may play a role in breast milk fatty acid composition.
Resumo:
There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.
Resumo:
Ocean processes are dynamic, complex, and occur on multiple spatial and temporal scales. To obtain a synoptic view of such processes, ocean scientists collect data over long time periods. Historically, measurements were continually provided by fixed sensors, e.g., moorings, or gathered from ships. Recently, an increase in the utilization of autonomous underwater vehicles has enabled a more dynamic data acquisition approach. However, we still do not utilize the full capabilities of these vehicles. Here we present algorithms that produce persistent monitoring missions for underwater vehicles by balancing path following accuracy and sampling resolution for a given region of interest, which addresses a pressing need among ocean scientists to efficiently and effectively collect high-value data. More specifically, this paper proposes a path planning algorithm and a speed control algorithm for underwater gliders, which together give informative trajectories for the glider to persistently monitor a patch of ocean. We optimize a cost function that blends two competing factors: maximize the information value along the path, while minimizing deviation from the planned path due to ocean currents. Speed is controlled along the planned path by adjusting the pitch angle of the underwater glider, so that higher resolution samples are collected in areas of higher information value. The resulting paths are closed circuits that can be repeatedly traversed to collect long-term ocean data in dynamic environments. The algorithms were tested during sea trials on an underwater glider operating off the coast of southern California, as well as in Monterey Bay, California. The experimental results show significant improvements in data resolution and path reliability compared to previously executed sampling paths used in the respective regions.
Resumo:
The last decade has seen an emerging consensus that the rule of law is critical in both domestic and international affairs. ‘Failed’ states generate important issues for both the rule of law and, importantly, for their intersection or interaction. A ‘failed’ state almost inevitably involves a breakdown of the domestic rule of law. When international intervention occurs, it raises concerns over substantive issues. Among these is the application of international law and international norms, including among other, the conventions and treaties, the responsibility to protect and protection of civilians. Where international missions seek to assist the people of ‘failed’ states in rebuilding their nations, establishing the rule of law is often the primary or initial pursuit. Any such international assistance/intervention is more effective if it is clearly subject to the rule of law and provides an exemplar/demonstration of how power should be exercised
Resumo:
The middle classes form the bulk of Indian migrants who head for Australian shores today. Yet, within Australia, general knowledge of the conditions that drive Indians’ determined search for opportunities overseas is limited to the few who have contact with international students and migrants from the sub-continent, and the skewed, melodramatic antics of Bollywood. It is my suggestion that a broader understanding of the underlying reasons that push Indians to migrate to societies like Australia can be had through readings of Chetan’s Bhagat’s four hugely popular novels: Five Point Someone, One night @the Call Center, The 3 mistakes of My life and Two States. Bhagat is a graduate of India’s famed Indian Institute of Technology and a former Non-Resident Indian investment banker who has since returned to live in Delhi. His experiences make him the perfect mouthpiece for middle India and his paperbacks depict that stratum of Indian society’s obsessions with social mobility, marriage, regional and religious divides with great sympathy and conviction. Drawing on observations made during a recent visit to India, I illustrate what an exploration of Bhagat’s paperbacks reveals about everyday, contemporary India and what it adds to Australian understandings of Indians and India today.
Resumo:
In this paper, I outline a new approach towards media and diaspora using the concept of the ‘franchise nation’. It is my contention that current theories on migration, media and diaspora with their emphasis on exile, multiple belongings, hybrid identities and their representations are inadequate to the task of explaining the emergence of a new trend in diaspora, home and host nation relationship. This, I suggest, is a recent shift most notable in the attitudes of the Chinese and Indian governments toward their diasporas. From earlier eras where Chinese sojourners were regarded as disloyal and Indians overseas left to fend for themselves, Chinese and Indian migrants are today directly addressed and wooed by their nations of origin. This change is motivated in part by the realisation that diasporic populations are, in fact, resources that can bring significant influence to bear on home nation interests within host nations. Such sway in foreign lands gains greater importance as China and India are, by virtue of their economic rise and prominence on the world stage, subject to ever more intense international scrutiny. Members of these diasporas have willingly responded to these changes by claiming and cultivating pivotal roles for themselves within host nations as spokespersons, informants and representatives, trading on their assumed familiarity with home cultures, language and commerce. As a result, China and India have initiated a number of statecraft strategies in recent years to (re)engage their diasporas. Both nations have identified media as amongst the key instruments of their strategies. New media enhances the ability of all parties—home and host states, institutions and individuals—to participate, interact and reciprocate. While China’s centralised government has utilised the notion of soft power (ruan shili) to describe its practices, India’s efforts are diffused along the lines of nation branding via myriad labels like India Inc. and the Global Indian. To explain this emergent trend, I propose a new framework, franchise nation, defined as a reciprocal relationship between nation and diaspora that is characterised by mutual obligations and benefits. In appropriating this phrase from Stephenson, I liken contemporary statecraft operating in China and India to a business franchising system wherein benefits may be economic or cultural and; those thus connected signal their willingness for mutual exchange and concede a sense of obligation. As such, franchise nation is not concerned with remote, unidirectional interference in home nation affairs a la Anderson’s ‘long-distance nationalism’. Rather, it is a framework that seeks to reflect more closely the dynamism of the relationship between diaspora, home and host nations.
Resumo:
Starting with the incident now known as the Cow’s Head Protest, this article traces and unpacks the events, techniques, and conditions surrounding the representation of ethno-religious minorities in Malaysia. The author suggests that the Malaysian Indians’ struggle to correct the dominant reading of their community as an impoverished and humbled underclass is a disruption of the dominant cultural order in Malaysia. It is also among the key events to have has set in motion a set of dynamics—the visual turn—introduced by new media into the politics of ethno-communal representation in Malaysia. Believing that this situation requires urgent examination the author attempts to outline the problematics of the task.
Resumo:
Purpose: The purpose of this paper is to guide the formation and to determine the structure of new governmental entrepreneurial ventures based on the nature of the public goods and the need for an entrepreneurial orientation. Design/methodology/research: This paper is conceptual and is based on reviews of appropriate organizational structure and entrepreneurship, cases studies, and the authors' experiences. Findings: Public or quasi-public entities may need to change their organizational structure in order to act more entrepreneurially and to be more effective in accomplishing their missions. Propositions are raised to guide the development of new public or private enterprises and provide the basis for future research. Research limitations/implications: This paper is conceptual and needs to be tested empirically. Though other levels of government and countries were included, a major focus is on the US federal government. Originality/value: This is the first published research on the topic of new enterprise government structures based on the nature of the goods and the requisite entrepreneurial orientation. It will help governmental and quasi-governmental organizations in developing efficient and effective organizational structures.