813 resultados para Models of Knowledge Management
Resumo:
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
This project’s aim was to create new experimental models in small animals for the investigation of infections related to bone fracture fixation implants. Animal models are essential in orthopaedic trauma research and this study evaluated new implants and surgical techniques designed to improve standardisation in these experiments, and ultimately to minimise the number of animals needed in future work. This study developed and assessed procedures using plates and inter-locked nails to stabilise fractures in rabbit thigh bones. Fracture healing was examined with mechanical testing and histology. The results of this work contribute to improvements in future small animal infection experiments.
Resumo:
Pavlovian fear conditioning is a robust technique for examining behavioral and cellular components of fear learning and memory. In fear conditioning, the subject learns to associate a previously neutral stimulus with an inherently noxious co-stimulus. The learned association is reflected in the subjects' behavior upon subsequent re-exposure to the previously neutral stimulus or the training environment. Using fear conditioning, investigators can obtain a large amount of data that describe multiple aspects of learning and memory. In a single test, researchers can evaluate functional integrity in fear circuitry, which is both well characterized and highly conserved across species. Additionally, the availability of sensitive and reliable automated scoring software makes fear conditioning amenable to high-throughput experimentation in the rodent model; thus, this model of learning and memory is particularly useful for pharmacological and toxicological screening. Due to the conserved nature of fear circuitry across species, data from Pavlovian fear conditioning are highly translatable to human models. We describe equipment and techniques needed to perform and analyze conditioned fear data. We provide two examples of fear conditioning experiments, one in rats and one in mice, and the types of data that can be collected in a single experiment. © 2012 Springer Science+Business Media, LLC.
Resumo:
Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.
Communication models of institutional online communities : the role of the ABC cultural intermediary
Resumo:
The co-creation of cultural artefacts has been democratised given the recent technological affordances of information and communication technologies. Web 2.0 technologies have enabled greater possibilities of citizen inclusion within the media conversations of their nations. For example, the Australian audience has more opportunities to collaboratively produce and tell their story to a broader audience via the public service media (PSM) facilitated platforms of the Australian Broadcasting Corporation (ABC). However, providing open collaborative production for the audience gives rise to the problem, how might the PSM manage the interests of all the stakeholders and align those interests with its legislated Charter? This paper considers this problem through the ABC’s user-created content participatory platform, ABC Pool and highlights the cultural intermediary as the role responsible for managing these tensions. This paper also suggests cultural intermediation is a useful framework for other media organisations engaging in co-creative activities with their audiences.
Communication models of institutional online communities : the role of the ABC cultural intermediary
Resumo:
The co-creation of cultural artefacts has been democratised given the recent technological affordances of information and communication technologies. Web 2.0 technologies have enabled greater possibilities of citizen inclusion within the media conversations of their nations. For example, the Australian audience has more opportunities to collaboratively produce and tell their story to a broader audience via the public service media (PSM) facilitated platforms of the Australian Broadcasting Corporation (ABC). However, providing open collaborative production for the audience gives rise to the problem, how might the PSM manage the interests of all the stakeholders and align those interests with its legislated Charter? This paper considers this problem through the ABC’s user-created content participatory platform, ABC Pool and highlights the cultural intermediary as the role responsible for managing these tensions. This paper also suggests cultural intermediation is a useful framework for other media organisations engaging in co-creative activities with their audiences.
Resumo:
We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.
Resumo:
In this paper an approach is presented for identification of a reduced model for coherent areas in power systems using phasor measurement units to represent the inter-area oscillations of the system. The generators which are coherent in a wide range of operating conditions form the areas in power systems and the reduced model is obtained by representing each area by an equivalent machine. The reduced nonlinear model is then identified based on the data obtained from measurement units. The simulation is performed on three test systems and the obtained results show high accuracy of identification process.
Resumo:
This paper reviews a wide range of literature on environmental management in the field in Queensland, and analyzes this by period and by author. An episodic pattern of activities since European settlement is evident. Periods of exploration (pre-1950) and inventory- compilation (ca. 1950-1970) were followed by two decades of media and non-government organization campaigning (ca. 1970-1990), then an era dominated by government regulatory action (ca. 1990-2010). These eras dominated public perception of what was happening in environmental practice. They were delineated by historic ‘interventions’ (summarily, the end of World War II, the 1971 inflationary crisis, and computerization respectively).
Resumo:
Most existing marinas are boat parking/storing and servicing facilities that have been built over a long period of time for the convenience of local boat owners.
Resumo:
This book underlines the growing importance of knowledge for the competitiveness of cities and their regions. Examining the role of knowledge - in its economic, socio-cultural, spatial and institutional forms - for urban and regional development, identifying the preconditions for innovative use of urban and regional knowledge assets and resources, and developing new methods to evaluate the performance and potential of knowledge-based urban and regional development, the book provides an in-depth and comprehensive understanding of both theoretical and practical aspects of knowledge-based development and its implications and prospects for cities and regions.
Resumo:
Software to create individualised finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has recently been developed. This study presents a geometric sensitivity analysis of this software to assess the effect of intra-observer variability in user-selected anatomical landmarks. User-selected landmarks on the osseous anatomy were defined from CT data-sets for three scoliosis patients and these landmarks were used to reconstruct patient-specific anatomy of the spine and ribcage using parametric descriptions. The intra-observer errors in landmark co-ordinates for these anatomical landmarks were calculated. FE models of the spine and ribcage were created using the reconstructed anatomy for each patient and these models were analysed for a loadcase simulating clinical flexibility assessment. The intra-observer error in the anatomical measurements was low in comparison to the initial dimensions, with the exception of the angular measurements for disc wedge and zygapophyseal joint (z-joint) orientation and disc height. This variability suggested that CT resolution may influence such angular measurements, particularly for small anatomical features, such as the z-joints, and may also affect disc height. The results of the FE analysis showed low variation in the model predictions for spinal curvature with the mean intra-observer variability substantially less than the accepted error in clinical measurement. These findings demonstrate that intra-observer variability in landmark point selection has minimal effect on the subsequent FE predictions for a clinical loadcase.