878 resultados para Model evaluation
Resumo:
Toivonen, H., Srinivasan, A., King, R. D., Kramer, S. and Helma, C. (2003) Statistical Evaluation of the Predictive Toxicology Challenge 2000-2001. Bioinformatics 19: 1183-1193
Resumo:
C.G.G. Aitken, Q. Shen, R. Jensen and B. Hayes. The evaluation of evidence for exponentially distributed data. Computational Statistics & Data Analysis, vol. 51, no. 12, pp. 5682-5693, 2007.
Resumo:
Rowley, J.& Urquhart, C. (2007). Understanding student information behavior in relation to electronic information services: lessons from longitudinal monitoring and evaluation Part 1. Journal of the American Society for Information Science and Technology, 58(8), 1162-1174. Sponsorship: JISC
Resumo:
Urquhart, C. & Rowley, J. (2007). Understanding student information behavior in relation to electronic information services: lessons from longitudinal monitoring and evaluation Part 2. Journal of the American Society for Information Science and Technology, 58(8), 1188-1197. Sponsorship: JISC
Resumo:
T.Boongoen and Q. Shen. Semi-Supervised OWA Aggregation for Link-Based Similarity Evaluation and Alias Detection. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 288-293, 2009. Sponsorship: EPSRC
Resumo:
Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.
Resumo:
Evaluation of temperature distribution in cold rooms is an important consideration in the design of food storage solutions. Two common approaches used in both industry and academia to address this question are the deployment of wireless sensors, and modelling with Computational Fluid Dynamics (CFD). However, for a realworld evaluation of temperature distribution in a cold room, both approaches have their limitations. For wireless sensors, it is economically unfeasible to carry out large-scale deployment (to obtain a high resolution of temperature distribution); while with CFD modelling, it is usually not accurate enough to get a reliable result. In this paper, we propose a model-based framework which combines the wireless sensors technique with CFD modelling technique together to achieve a satisfactory trade-off between minimum number of wireless sensors and the accuracy of temperature profile in cold rooms. A case study is presented to demonstrate the usability of the framework.
Resumo:
Existing work in Computer Science and Electronic Engineering demonstrates that Digital Signal Processing techniques can effectively identify the presence of stress in the speech signal. These techniques use datasets containing real or actual stress samples i.e. real-life stress such as 911 calls and so on. Studies that use simulated or laboratory-induced stress have been less successful and inconsistent. Pervasive, ubiquitous computing is increasingly moving towards voice-activated and voice-controlled systems and devices. Speech recognition and speaker identification algorithms will have to improve and take emotional speech into account. Modelling the influence of stress on speech and voice is of interest to researchers from many different disciplines including security, telecommunications, psychology, speech science, forensics and Human Computer Interaction (HCI). The aim of this work is to assess the impact of moderate stress on the speech signal. In order to do this, a dataset of laboratory-induced stress is required. While attempting to build this dataset it became apparent that reliably inducing measurable stress in a controlled environment, when speech is a requirement, is a challenging task. This work focuses on the use of a variety of stressors to elicit a stress response during tasks that involve speech content. Biosignal analysis (commercial Brain Computer Interfaces, eye tracking and skin resistance) is used to verify and quantify the stress response, if any. This thesis explains the basis of the author’s hypotheses on the elicitation of affectively-toned speech and presents the results of several studies carried out throughout the PhD research period. These results show that the elicitation of stress, particularly the induction of affectively-toned speech, is not a simple matter and that many modulating factors influence the stress response process. A model is proposed to reflect the author’s hypothesis on the emotional response pathways relating to the elicitation of stress with a required speech content. Finally the author provides guidelines and recommendations for future research on speech under stress. Further research paths are identified and a roadmap for future research in this area is defined.
Resumo:
A new science curriculum was introduced to primary schools in the Republic of Ireland in 2003. This curriculum, broader in scope than its 1971 predecessor (Curaclam na Bunscoile, 1971), requires teachers at all levels of primary school to teach science. A review carried out in 2008 of children’s experiences of this curriculum found that its implementation throughout the country was uneven. This finding, together with the increasing numbers of teachers who were requesting support to implement this curriculum, suggested the need for a review of Irish primary teachers’ needs in the area of science. The research study described in this thesis was undertaken to establish the extent of Irish primary teachers’ needs in the area of science by conducting a national survey. The data from this survey, together with data from international studies, were used to develop a theoretical framework for a model of Continuing Professional Development (CPD). This theoretical framework was used to design the Whole- School, In-School (WSIS) CPD model which was trialled in two case-study schools. The participants in these ‘action-research’ case-studies acted as co-researchers, who contributed to the development and evolution of the CPD model in each school. Analysis of the data gathered as part of the evaluation of the Whole-School, In- School (WSIS) model of CPD found an improved experience of science for children and improved confidence for teachers teaching at all levels of the primary school. In addition, a template for the establishment of a culture of collaborative CPD in schools has been developed from an analysis of the data
Resumo:
Process guidance supports users to increase their process model understanding, process execution effectiveness as well as efficiency, and process compliance performance. This paper presents a research in progress encompassing our ongoing DSR project on Process Guidance Systems and a field evaluation of the resulting artifact in cooperation with a company. Building on three theory-grounded design principles, a Process Guidance System artifact for the company’s IT service ticketing process is developed, deployed and used. Fol-lowing a multi-method approach, we plan to evaluate the artifact in a longitudinal field study. Thereby, we will not only gather self-reported but also real usage data. This article describes the development of the artifact and discusses an innovative evaluation approach.
Resumo:
The universality versus culture specificity of quantitative evaluations (negative-positive) of 40 events in world history was addressed using World History Survey data collected from 5,800 university students in 30 countries/societies. Multidimensional scaling using generalized procrustean analysis indicated poor fit of data from the 30 countries to an overall mean configuration, indicating lack of universal agreement as to the associational meaning of events in world history. Hierarchical cluster analysis identified one Western and two non-Western country clusters for which adequate multidimensional fit was obtained after item deletions. A two-dimensional solution for the three country clusters was identified, where the primary dimension was historical calamities versus progress and a weak second dimension was modernity versus resistance to modernity. Factor analysis further reduced the item inventory to identify a single concept with structural equivalence across cultures, Historical Calamities, which included man-made and natural, intentional and unintentional, predominantly violent but also nonviolent calamities. Less robust factors were tentatively named as Historical Progress and Historical Resistance to Oppression. Historical Calamities and Historical Progress were at the individual level both significant and independent predictors of willingness to fight for one’s country in a hierarchical linear model that also identified significant country-level variation in these relationships. Consensus around calamity but disagreement as to what constitutes historical progress is discussed in relation to the political culture of nations and lay perceptions of history as catastrophe.
Resumo:
We develop general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit recent nonparametric asymptotic distributional results, are both easy-to-implement and highly accurate in empirically realistic situations. We also illustrate that properly accounting for the measurement errors in the volatility forecast evaluations reported in the existing literature can result in markedly higher estimates for the true degree of return volatility predictability.
Resumo:
Interleukin-1 beta (IL1β) is a proinflammatory cytokine that mediates arthritic pathologies. Our objectives were to evaluate pain and limb dysfunction resulting from IL1β over-expression in the rat knee and to investigate the ability of local IL1 receptor antagonist (IL1Ra) delivery to reverse-associated pathology. IL1β over-expression was induced in the right knees of 30 Wistar rats via intra-articular injection of rat fibroblasts retrovirally infected with human IL1β cDNA. A subset of animals received a 30 µl intra-articular injection of saline or human IL1Ra on day 1 after cell delivery (0.65 µg/µl hIL1Ra, n = 7 per group). Joint swelling, gait, and sensitivity were investigated over 1 week. On day 8, animals were sacrificed and joints were collected for histological evaluation. Joint inflammation and elevated levels of endogenous IL1β were observed in knees receiving IL1β-infected fibroblasts. Asymmetric gaits favoring the affected limb and heightened mechanical sensitivity (allodynia) reflected a unilateral pathology. Histopathology revealed cartilage loss on the femoral groove and condyle of affected joints. Intra-articular IL1Ra injection failed to restore gait and sensitivity to preoperative levels and did not reduce cartilage degeneration observed in histopathology. Joint swelling and degeneration subsequent to IL1β over-expression is associated limb hypersensitivity and gait compensation. Intra-articular IL1Ra delivery did not result in marked improvement for this model; this may be driven by rapid clearance of administered IL1Ra from the joint space. These results motivate work to further investigate the behavioral consequences of monoarticular arthritis and sustained release drug delivery strategies for the joint space.
Resumo:
Osteoarthritis (OA) is a degenerative joint disease that can result in joint pain, loss of joint function, and deleterious effects on activity levels and lifestyle habits. Current therapies for OA are largely aimed at symptomatic relief and may have limited effects on the underlying cascade of joint degradation. Local drug delivery strategies may provide for the development of more successful OA treatment outcomes that have potential to reduce local joint inflammation, reduce joint destruction, offer pain relief, and restore patient activity levels and joint function. As increasing interest turns toward intra-articular drug delivery routes, parallel interest has emerged in evaluating drug biodistribution, safety, and efficacy in preclinical models. Rodent models provide major advantages for the development of drug delivery strategies, chiefly because of lower cost, successful replication of human OA-like characteristics, rapid disease development, and small joint volumes that enable use of lower total drug amounts during protocol development. These models, however, also offer the potential to investigate the therapeutic effects of local drug therapy on animal behavior, including pain sensitivity thresholds and locomotion characteristics. Herein, we describe a translational paradigm for the evaluation of an intra-articular drug delivery strategy in a rat OA model. This model, a rat interleukin-1beta overexpression model, offers the ability to evaluate anti-interleukin-1 therapeutics for drug biodistribution, activity, and safety as well as the therapeutic relief of disease symptoms. Once the action against interleukin-1 is confirmed in vivo, the newly developed anti-inflammatory drug can be evaluated for evidence of disease-modifying effects in more complex preclinical models.
Resumo:
Gemstone Team IMMUNE (Innovative Medicines for Maladies Utilizing Nutraceutical Enhancements)