967 resultados para Mixed Fixative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sea-cliffs of the Isle of Wight were deposited during a period of overall sea-level rise starting in the Barremian (Lower Cretaceous) and continuing into the Aptian and Albian. They consist of fluvial, coastal and lagoonal sediments including greensands and clays. Numerous episodes of erosion, deposition and faunal colonization reflect condensation and abandonment of surfaces with firmgrounds and hardgrounds. This study focused mainly on shallow marine cycles where variations in clay mineralogy would not be expected, because overall system composition, sediment source, and thermal history are similar for all the samples in the studied section. Instead we found a wide variety of clay assemblages even in single samples within a 200 in interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motivation for this paper is to present procedures for automatically creating idealised finite element models from the 3D CAD solid geometry of a component. The procedures produce an accurate and efficient analysis model with little effort on the part of the user. The technique is applicable to thin walled components with local complex features and automatically creates analysis models where 3D elements representing the complex regions in the component are embedded in an efficient shell mesh representing the mid-faces of the thin sheet regions. As the resulting models contain elements of more than one dimension, they are referred to as mixed dimensional models. Although these models are computationally more expensive than some of the idealisation techniques currently employed in industry, they do allow the structural behaviour of the model to be analysed more accurately, which is essential if appropriate design decisions are to be made. Also, using these procedures, analysis models can be created automatically whereas the current idealisation techniques are mostly manual, have long preparation times, and are based on engineering judgement. In the paper the idealisation approach is first applied to 2D models that are used to approximate axisymmetric components for analysis. For these models 2D elements representing the complex regions are embedded in a 1D mesh representing the midline of the cross section of the thin sheet regions. Also discussed is the coupling, which is necessary to link the elements of different dimensionality together. Analysis results from a 3D mixed dimensional model created using the techniques in this paper are compared to those from a stiffened shell model and a 3D solid model to demonstrate the improved accuracy of the new approach. At the end of the paper a quantitative analysis of the reduction in computational cost due to shell meshing thin sheet regions demonstrates that the reduction in degrees of freedom is proportional to the square of the aspect ratio of the region, and for long slender solids, the reduction can be proportional to the aspect ratio of the region if appropriate meshing algorithms are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of radix is crucial for multi-valued logic synthesis. Practical examples, however, reveal that it is not always possible to find the optimal radix when taking into consideration actual physical parameters of multi-valued operations. In other words, each radix has its advantages and disadvantages. Our proposal is to synthesise logic in different radices, so it may benefit from their combination. The theory presented in this paper is based on Reed-Muller expansions over Galois field arithmetic. The work aims to firstly estimate the potential of the new approach and to secondly analyse its impact on circuit parameters down to the level of physical gates. The presented theory has been applied to real-life examples focusing on cryptographic circuits where Galois Fields find frequent application. The benchmark results show the approach creates a new dimension for the trade-off between circuit parameters and provides information on how the implemented functions are related to different radices.