947 resultados para Mid-IR
Resumo:
G. Herlitz
Resumo:
mit e. poln. Übers. von Jakob Tugendhold
Resumo:
Much has been written about the relation of social support to health outcomes. Support networks were found to be predictive of health status. Not so clear was the manner in which social support helped the individual to avoid health complications. Whereas some aspects of the support network were protective, others were burdensome. Duties to one's network could serve as a stressor and duties outside one's network might stress the support system itself. Exposure to one's network was associated with certain health risks while disruption in one's social support network was associated with other health risks.^ Many factors contributed to the impact of a social support network upon the individual member: the characteristics of the individual, the individual's role or position within the network, qualities of the network and duties or indebtedness of the individual to the network. This investigation considered the possibility that performance could serve as a stressor in a fashion similar to an exposure to a health hazard.^ Because the literature includes many examples of studies in which the subjects were college students, academic progress is a performance common to most subjects. A profile of the support networks of successful students was contrasted with those of less successful students in this correlational study.^ What was uncovered in this investigation was a very complex web of interrelated constructs. Most aspects of the social support network did not significantly predict academic performance. Only a limited number of characteristics were associated with academic success: the frequency of support, student age, the existence of a 'mentor' within one' s network, and the extent to which one received a predominant source of support. Other factors had a tendency to be negatively correlated with midterm grade, suggesting those factors may impede academic performance.^ Medical status did not predict grades, but was correlated with many aspects of the network. Disruptions in particular parts of one's network were correlated with particular health categories. In fact, disruption in social support was more predictive of academic outcomes than medical complications. Whereas the individual's values were related to the contributing factors, only the individual's satisfaction with certain aspects of the support network were predictive of higher midterm grades in a psychology class. Dissatisfaction was associated with lower grades, suggesting a disruptive effect within the network. Associations among the features of support networks which predicted academic progress were considered. ^
Resumo:
This thesis is centered on applying molecular genetics to study pattern formation during animal development. More specifically, this thesis describes the functional studies of a LIM-homeodomain gene called lmx1b during murine embryogenesis. Lmx1b expression is restricted to the mid-hindbrain junction as well as to the dorsal mesenchyme of the limb, suggesting important functions during mid-hindbrain and limb development. To test these possibilities, lmx1b homozygous mutant mice were generated and their limb and CNS phenotypes examined. Lmx1b homozygous mutant mice exhibit a large reduction of mid-hindbrain structures, and that their limbs are symmetrical along the dorsal-ventral axis as the result of a dorsal to ventral transformation. Taken together, these studies define essential functions for lmx1b in mid-hindbrain patteming and in dorsal limb cell fate determination. However, the molecular mechanisms which accounts for these phenotypes are unknown, and whether lmx1b has same or distinctive functions during the mid-hindbrain and limb development is also unclear. ^ Recently, insight into molecular mechanisms of mid-hindbrain patterning and limb development has resulted from the identification of several factors with restricted expression patterns within these regions. These include the secreted factors wnt-1, fgf-8, wnt-7a and the transcription factors pax-2, and en-1. Targeted disruption of any of these genes in mice suggests that these genes might be involved in similar regulatory pathways. Analysis of the expression of these genes in lmx1b mutants demonstrates that lmxlb is not required for the initiation, but is required to maintain their expression at the mid-hindbrain junction. Thus, lmxlb is not required for specifying mid-hindbrain cell fates, rather, it functions to ensure the establishment or maintenance of a proper organizing center at the mid-hindbrain junction. Interestingly, lmxlb functions cell non-autonomously in chimera analysis, which indicates that lmx1b might regulate the expression of secreted factors such as wnt-1 and/or fgf-8 in the organizing center. In contrast, lmx1b functions cell autonomously in the dorsal limb to govern dorsal ventral limb development and its expression is regulated by with wnt-7a and en-1. However, single and double mutant analysis suggest that all three genes have partially overlapping functions as well as independent functions. The results point toward a complicated network of cross-talks among all three limb axes. ^
Resumo:
The mid-Pliocene was an episode of prolonged global warmth and strong North Atlantic thermohaline circulation, interrupted briefly at circa 3.30 Ma by a global cooling event corresponding to marine isotope stage (MIS) M2. Paleoceanographic changes in the eastern North Atlantic have been reconstructed between circa 3.35 and 3.24 Ma at Deep Sea Drilling Project Site 610 and Integrated Ocean Drilling Program Site 1308. Mg/Ca ratios and d18O from Globigerina bulloides are used to reconstruct the temperature and relative salinity of surface waters, and dinoflagellate cyst assemblages are used to assess variability in the North Atlantic Current (NAC). Our sea surface temperature data indicate warm waters at both sites before and after MIS M2 but a cooling of ~2-3°C during MIS M2. A dinoflagellate cyst assemblage overturn marked by a decline in Operculodinium centrocarpum reflects a southward shift or slowdown of the NAC between circa 3.330 and 3.283 Ma, reducing northward heat transport 23-35 ka before the global ice volume maximum of MIS M2. This will have established conditions that ultimately allowed the Greenland ice sheet to expand, leading to the global cooling event at MIS M2. Comparison with an ice-rafted debris record excludes fresh water input via icebergs in the northeast Atlantic as a cause of NAC decline. The mechanism causing the temporary disruption of the NAC may be related to a brief reopening of the Panamanian Gateway at about this time.
Resumo:
A transect from the bathyal to proximal shelf facies of the Boreal Realm was investigated to compare spatial and temporal distribution changes of calcareous dinoflagellate cysts (c-dinocysts) throughout the mid-Cenomanian in order to gain information on the ecology of these organisms. Pithonelloideae dominated the cyst assemblages to more than 95% on the shelf, a prevalence that can be observed throughout most of the Upper Cretaceous. The affinity of this group with the dinoflagellates, which is still controversially discussed, can be confirmed, based on evidence from morphological features and distribution patterns. The consistent prevalence of Pithonella sphaerica and P. ovalis in c-dinocyst assemblages throughout the Upper Cretaceous indicates that they were produced more frequently than cysts of the other species and might, therefore, represent a vegetative dinoflagellate life stage. P. sphaerica and P. ovalis are interpreted as eutrophic species. P. sphaerica is the main species in a marginal-shelf upwelling area, offshore Fennoscandia. Here, sedimentary cyclicity appears to have been reduced to the strongest light/dark changes, while in the outer shelf sediments, light/dark cycles are well-developed and show pronounced temporal assemblage changes. Cyclic fluctuations in the P. sphaerica / P. ovalis ratio reflect shifts of the preferred facies zones and indicate changes in surface mixing patterns. During periods of enhanced surface mixing most parts of the shelf were well-ventilated, and nutrient-enriched surface waters led to high productivity and dominance of the Pithonelloideae. These conditions on the shelf contrasted with those in the open ocean, where more oligotrophic and probably stratified waters prevailed, and an assemblage with very few Pithonelloideae and dominance of Cubodinellum renei and Orthopithonella ? gustafsonii was characteristic. While orbitally-forced light/dark sedimentary cyclicity of the shelf sections was mainly related to surface-water carbonate productivity changes, no cyclic modulation of productivity was observed in the oceanic profile. Therefore, dark layer formation in the open ocean was predominantly controlled by the cyclic establishment of anoxic bottom water conditions. Orbitally-forced interruptions in mixing on the shelf resulted in cyclic periods of stratification and oligotrophy in the surface waters, an expansion of oceanic species to the outer shelf, and a shelfward shift of pithonelloid-facies zones, which were probably related to shelfward directed oceanic ingressions.
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
Sites 545 and 547 collectively penetrated 629 m of mid-Cretaceous strata (upper Aptian to upper Cenomanian) off central Morocco during Leg 79 of the Deep Sea Drilling Project. Site 545, at the base of the steep Mazagan Escarpment, records a virtually complete succession of hemipelagic sediments of early late Aptian to middle Cenomanian age. Minor faunal recycling occurred throughout much of the upper Aptian to middle Albian part of the sequence (Cores 55 through 41), reflecting bottom currents along the Mazagan Escarpment. This may be related to the strong upwelling regime and high surface water productivity over Site 545 during the latest Aptian through middle Albian. The upwelling system ceased rather abruptly in this area in late middle Albian time. Recycling of older strata by bottom currents also ceased in the late middle Albian and resulted in a slower average accumulation rate in the upper Albian to middle Cenomanian section of Site 545 (Cores 40 through 28). However, intervals of pebbly claystone conglomerates in Cores 40 and 34 record sporadic instability in the slope adjacent to Site 545. Site 547, located only about 15 km seaward, is situated in a small sub-basin adjacent to the basement block drilled by Site 544. It contains an expanded upper Albian to upper Cenomanian sequence as a result of the numerous conglomeratic intervals throughout much of the section. In contrast to Site 545, the conglomerates were not derived from older strata cropping out on the Mazagan Escarpment; rather, they originated penecontemporaneously from a local unstable slope. A detailed biostratigraphic framework based on planktonic foraminifers is established for the mid-Cretaceous sections of Sites 545 and 547 and a new composite zonal scheme is proposed for the early late Aptian through early late Cenomanian interval. Fifty-five species are recognized and illustrated
Resumo:
Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyze a ~4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemistical, geochronological, micropaleontological (ostracoda, testate amoeba) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for Central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP, which drained catastrophically in spring 2005. The present study emphasizes that Arctic lake systems and periglacial landscapes are highly dynamic and permafrost formation as well as degradation in Central Beringia was controlled by regional to global climate patterns and as well as by local disturbances.
Resumo:
Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.