996 resultados para Mgo-feo-sio2-al3o3-cr2o3 System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO*/MgO ratio (0.95 with total Fe as FeO), and Mg# (100 Mg/Mg + Fe" = 70), sample 483-17-2-(78-83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a La/Sm_cn (chondrite-normalized) = 0.36, and Eu/Sm_cn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (Eu/Sm_cn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78-83) to form the least differentiated sample with Mg# = 63. The La/Sm_cn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher La/Sm_cn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower La/Sm_cn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78-83) is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cretaceous basalts recovered during Ocean Drilling Program Leg 183 at Site 1137 on the Kerguelen Plateau show remarkable geochemical similarities to Cretaceous continental tholeiites located on the continental margins of eastern India (Rajmahal Traps) and southwestern Australia (Bunbury basalt). Major and trace element and Sr-Nd-Pb isotopic compositions of the Site 1137 basalts are consistent with assimilation of Gondwanan continental crust (from 5 to 7%) by Kerguelen plume-derived magmas. In light of the requirement for crustal contamination of the Kerguelen Plateau basalts, we re-examine the early tectonic environment of the initial Kerguelen plume head. Although a causal role of the Kerguelen plume in the breakup of Eastern Gondwana cannot be ascertained, we demonstrate the need for the presence of the Kerguelen plume early during continental rifting. Activity resulting from interactions by the newly formed Indian and Australian continental margins and the Kerguelen plume may have resulted in stranded fragments of continental crust, isolated at shallow levels in the Indian Ocean lithosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At DSDP Site 477, late Quaternary diatomaceous muds and delta-derived silty-sand turbidites at 2000 meters water depth have been extensively and progressively altered by a deep-seated heat source beneath a sill. Bulk petrologic and microprobe analyses have identified a crudely zoned paragenesis within 260 meters sub-bottom which ranges from unaltered to slightly altered oozes (0-50 m), anhydrite-dolomite claystones (105-125 m), illite-chlorite-pyrite claystones (125-140 m), chlorite-pyrite-calcite-carbonaceous claystones with traces of K-feldspar, albite, epidote (140-190 m), and chlorite-epidote-quartz-albite-pyrrhotite-sphene sandstone (190-260 m). Several petrologic features suggest rapid processes of ocean floor metamorphism: (1) friable and porous textures, (2) abundant relict grains with overgrowths, (3) idiomorphic habits on epidotes, feldspars, and quartz, and (4) a steep gradient in levels of alteration. Many aspects of this hydrothermal assemblage are similar to hydrothermally metamorphosed sandstones of the Cerro Prieto, Mexico, geothermal area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical compositions and 1-atm. phase relations were determined for basalts drilled from Holes 501, 504A, 504B, 505, and 505B on Legs 68, 69, and 70 of the Deep Sea Drilling Project. Chemical, experimental, and petrographic data indicate that these basalts are moderately evolved (Mg' values from 0.60 to 0.70), with olivine plus Plagioclase and often clinopyroxene on the liquidus. Chemical stratigraphy was used to infer that sequential influxes of magma into a differentiating magma chamber or separate flows from different magma chambers or both had occurred. Two major types of basalt were found to be inter layered: Group M, a rarely occurring type with major element chemistry and magmaphile element abundances within the range of the majority of ocean-floor basalts (TiO2 = 1.3%, Na2O 2.5%, Zr = 103 ppm, Nb = 2.5 ppm, and Y = 31 ppm); and Group D, a highly unusual series of basalt compositions that exhibit much lower magmaphile element abundances (TiO2 = 0.75-1.2%, Na2O = 1.7-2.3%, Zr = 34-60 ppm, Nb = 0.5-1.2 ppm, and Y = 16-27 ppm). The liquidus temperatures of the Group D basalts are high (1230- 1260°C) compared with those of other ocean-floor basalts of similar Mg' values. They have high CaO/Na2O ratios (5-8) and are calculated to be in equilibrium with unusually calcic Plagioclase (An78-84). The two basalt groups cannot be related by fractionation processes. However, constant Zr/Nb ratios (>40) for the two groups suggest a single mantle source, with differences in magmaphile element abundances and other element ratios (e.g., Zr/Ti, Zr/Y, Ce/Yb) arising through sequential melting of the same source. Magmas similar to Group D, if mixed with more typical mid-ocean-ridge basalt (MORB) magmas in shallow magma chambers, could provide a source for the highly calcic Plagioclase phenocrysts that appear in more common (i.e., less depleted) phyric ocean-floor basalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace element analyses are presented for 110 samples from the DSDP Leg 60 basement cores drilled along a transect across the Mariana Trough, arc, fore-arc, and Trench at about 18°N. The igneous rocks forming breccias at Site 453 in the west Mariana Trough include plutonic cumulates and basalts with calc-alkaline affinities. Basalts recovered from Sites 454 and 456 in the Mariana Trough include types with compositions similar to normal MORB and types with calc-alkaline affinities within a single hole. At Site 454 the basalts show a complete compositional transition between normal MORB and calc-alkaline basalts. These basalts may be the result of mixing of the two magma types in small sub-crustal magma reservoirs or assimilation of calc-alkaline, arc-derived vitric tuffs by normal MORB magmas during eruption or intrusion. A basaltic andesite clast in the breccia recovered from Site 457 on the active Mariana arc and samples dredged from a seamount in the Mariana arc are calc-alkaline and similar in composition to the basalts recovered from the Mariana Trough and West Mariana Ridge. Primitive island arc tholeiites were recovered from all four sites (Sites 458-461) drilled on the fore-arc and arc-side wall of the trench. These basalts form a coherent compositional group distinct from the Mariana arc, West Mariana arc, and Mariana Trough calc-alkaline lavas, indicating temporal (and perhaps spatial?) chemical variations in the arc magmas erupted along the transect. Much of the 209 meters of basement cored at Site 458 consists of endiopside- and bronzite-bearing, Mg-rich andesites with compositions related to boninites. These andesites have the very low Ti, Zr, Ti/Zr, P, and rare-earthelement contents characteristic of boninites, although they are slightly light-rare-earth-depleted and have lower MgO, Cr, Ni, and higher CaO and Al2O3 contents than those reported for typical boninites. The large variations in chemistry observed in the lavas recovered from this transect suggest that diverse mantle source compositions and complex petrogenetic process are involved in forming crustal rocks at this intra-oceanic active plate margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geomorphology of the Guinea Basin is described along with sediments from cores collected on the abyssal plain, within the abyssal hill zone, and in the eastern part of the Chain Fracture Zone. Stratigraphic differentiation of deep-sea sediments was based on diatom analysis, geochemical and lithological data. Holocene and Pleistocene were identified by these criteria. The lower boundary of Holocene is was found from a marked decrease in CaCO3 concentration and total diatom count. Mineral and chemical compositions are given for coarse silt fraction of various Late Pleistocene sediments. It is shown that this facial complex is determined by tectonic position of the Guinea Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Refractive index and chemical composition were determined for glass shards contained in more than 100 tephra layers in DSDP Leg 58 sediment cores collected in the Shikoku Basin, North Philippine Sea. The refractive index is consistent with chemical composition. Refractive index and total iron show a linear relationship. Tephra in Pleistocene and Pliocene sediments is mostly rhyolitic and dacitic (non-alkali), whereas tephra in the Miocene shows wide composition variations in the eastern part of the basin. Basaltic tephra is recognized in Miocene sediments at Sites 443 and 444, but not at Site 442, west of the other two sites. This indicates that the basaltic tephra came from eruption relatively close to those drill sites (perhaps the Kinan Seamounts and the Shichito-Iwo Jima volcanic arc), although the exact source has not been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several bog manganese deposits were discovered in the Riding Mountain area in Manitoba during the spring and summer of 1940. A study was made of the known deposits to determine the grade of the occurrences, a possible source of the manganese oxides in the bog deposits and the possibilities of locating other manganese occurrences. Samples of the bog manganese, of spring waters from which the manganese oxides have apparently been precipitated, of the Odanah shale in which the deposits occur, and of "ironstone" nodules found in the Odanah and Riding Mountain shales were gathered in the field and later analyzed. In addition to chemical analyses of the above-mentioned samples, several polished sections of the manganese oxides were prepared and studied under the microscope, thin-sections of nodules were examined, and spectrographic analyses of both nodules and bog manganese were made. ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical analyses have been performed on sediment samples collected during Ocean Drilling Program Leg 178 from the continental rise and outer continental shelf of the Antarctic Peninsula. A suite of 21 trace elements was measured by neutron activation analysis in 39 sediment samples, and major element oxides were determined in 67 samples by electron microprobe analyses of fused glass beads. These geochemical data, combined with the X-ray diffraction and X-ray fluorescence data from shipboard analyses, provide a reasonable estimate of the mineral and chemical composition of sediments deposited along the western margin of the Antarctic Peninsula.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed 33 Pliocene bulk sediment samples from Ocean Drilling Program Site 1085 in the Cape Basin, located offshore of western Africa in the Angola-Benguela Current system, for 17 major and trace elements, and interpreted their associations and temporal variations in the context of an allied data set of CaCO3, opal, and Corg. We base our interpretations on elemental ratios, accumulation rates, inter-element correlations, and several multi-element statistical techniques. On the basis of qualitative assessment of downhole changes in the distributions of P and Ba, utilized as proxies of export production, we conclude that highs in bulk and biogenic accumulation that occur at 3.2 Ma, 3.0 Ma, 2.4 Ma, and 2.25 Ma were caused by increases in export production as well as terrigenous flux, and record a greater sequestering of organic matter during these time periods. Studies of refractory elements and other indicator proxies (SiO2, Al2O3, TiO2, Fe2O3, MgO, V, Cr, Sr, and Zr) strongly suggest that the terrigenous component of the bulk sediment is composed of two compositional end-members, one being 'basaltic' in composition and the other similar to an 'average shale'. The basaltic end-member comprises approximately 10-15% of the total bulk sediment and its presence is consistent with the local geology of source material in the drainage basin of the nearby Orange River. The increase in bulk accumulation at 2.4 Ma appears to reflect a greater relative increase in basaltic input than the relative increase in shale-type input. Although studies such as this cannot precisely identify the transport mechanisms of the different terrigenous components, these results are most consistent with variations in sea level (and associated changes in shelf geometry and fluvial input) being responsible for the changing depositional conditions along the Angolan Margin during this time period.