762 resultados para Mechanical mixtures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66) with ethylene propylene diene (EPDM) rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg) of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron donor properties of Pr6O11 activated at 300. 500 and 800°C are reported from the studies on adsorption of electron acceptors of various electron affinity (7. 7, 8, 8-tetracyanoquinodimethane. 2, 3. 5, 6-tetrachloro-l, 4-benzoquin one. p-dinitrobenzene. and m-dinitrobenzene) in three solvents (acetonitrile, 1,4-dioxan and ethyl acetate). The extent of electron transfer during adsorption is understood from magnetic measurements and ESR spectral data. The corresponding data on mixed oxides of Pr and Al are reported for various compositions, The acid / base properties of these oxides are determined using a set of Hammett indicators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study the preparation and characterisation of rubber ferrite composites (RFC) containing barium ferrite (BaF) and strontium ferrite (SrF) have been dealt with. The incorporation of the hard ferrites into natural and nitrile rubber was carried out according to a specific recipe for various loadings of magnetic fillers. For this, the ferrite materials namely barium ferrite and strontium ferrite having the general formula MO6Fe2O3 have been prepared by the conventional ceramic techniques. After characterisation they were incorporated into the natural and nitrile rubber matrix by mechanical method. Carbon black was also incorporated at different loading into the rubber ferrite composites to study its effect on various properties. The cure characteristics, mechanical, dielectric and magnetic properties of these composites were evaluated. The ac electrical conductivity of both the ceramic ferrites and rubber ferrite composites were also calculated using a simple relation. The investigations revealed that the rubber ferrite composites with the required dielectric and magnetic properties can be obtained by the incorporation of ferrite fillers into the rubber matrix, without compromising much on the processability and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of pH on the fluorescence efficiency of fluorescein is evaluated using thermal lens technique. Fluorescence efficiency increases as the sample becomes more and more alkaline. But when fluorescein is mixed with rhodamine B fluorescence quenching of fluorescein takes place with the excitation of rhodamine B. The electronic energy transfer in this mixture is investigated using Optical Parametric Oscillator as the excitation source. The effect of pH on the efficiency of energy transfer in fluorescein–rhodamine B mixture is presented.