890 resultados para Material properties
Resumo:
Most of the plastic injection companies are focused in the production of some products with a high exigency standard levels. That is why, to compete and gain some market share in front of the concurrency of companies from other countries, they need to be able to introduce new rapid prototyping techniques and product development.
Resumo:
Macroalgae, in particular kelps, produce a large amount of biomass in Kongsfjorden, which is to a great extent released into the water in an annual cycle. As an example, the brown alga Alaria esculenta loses its blade gradually, 3 ± 0.8 % of the blade area per day (August 2012), thereby adding to the pool of particulate organic matter (POM) in the fjord. Upon release small thallus pieces are "aging" in that they are prone to leaching and serving as substrate for microorganisms, thus turning into palatable food for suspension and bottom feeders. In order to define a macroalgal baseline for the Kongsfjorden food web, stable isotopes d14C and d15N were measured in individuals of A. esculenta, Saccharina latissima and Laminaria digitata directly sampled after collection and in artificially produced POM (aPOM) of A. esculenta that was allowed to age under experimental conditions. In aPOM from this species sampled in August 2012 the C/N ratios decreased between d1 and d8 of a 14-day culture period in parallel to the fading photosynthetic activity of the algal fragments as demonstrated by use of an Imaging-PAM. Microscopic observations of the aPOM in August 2012 and 2013 revealed the frequent occurrence of small brown algal endo- and epiphytes. First feeding experiments with Mysis oculata (Mysids) and Hiatella arctica (Bivalves) showed that these species can ingest macroalgal POM. The importance of kelp-derived POM for the food web is subject of the current research.
Resumo:
We have fabricated titanium and vanadium supersaturated silicon layers on top of a silicon substrate by means of ion implantation and pulsed laser melting processes. This procedure has proven to be suitable to fabricate an intermediate band (IB) material, i.e. a semiconductor material with a band of allowed states within the bandgap. Sheet resistance and Hall mobility measurements as a function of the temperature show an unusual behavior that has been well explained in the framework of the IB material theory, supposing that we are dealing with a junction formed by the IB material top layer and the n-Si substrate. Using an analytical model that fits with accuracy the experimental sheet resistance and mobility curves, we have obtained the values of the exponential factor for the thermically activated junction resistance of the bilayer, showing important differences as a function of the implanted element. These results could allow us to engineer the IB properties selecting the implanted element depending on the required properties for a specific application.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Layered lithium-vanadium oxide with a composition of LixVyO2 (x = 0.86 and y = 0.8) was prepared by the hydrothermal reaction of V2O3 with LiOH center dot H2O at 180 degrees C. This material corresponds to a layered rhombohedral structure related to alpha-NaFeO2 in which the vanadium ions are disordered in alternate layers of octahedral 3a (0, 0, 0) and 3b (0, 0, 1/2) sites. The electrochemical properties of this Li0.86V0.8O2 material were investigated and compared with those of the layered Li0.96VO2 made by the conventional solid-state reaction. It was found that the electrochemical capacity and reversibility of the Li0.86V0.8O2 material are significantly improved compared to those of the Li0.96VO2 material; the reversible specific capacities of the Li/Li0.86V0.8O2 and Li/Li0.96VO2 systems are similar to 100 and similar to 50 mAh g(-1), respectively, under the current densities of 7.14 mA g(-1) over 20 charge-discharge cycles with a potential window of 1.50-4.50 V. Such a reversibility results from the structural stability of Li0.86V0.8O2, whereas the increase in the reversible specific capacity can be qualitatively interpreted in terms of the presence of vanadium vacancies in the structure. (c) 2005 The Electrochemical Society.
Resumo:
Spray drying is widely used to manufacture many powdered products, with the drying process parameters having significant influence over the final powder's surface properties and propensity for unwanted caking. In most cases caking experiments are performed on bulk powders, but especially in multi-component powders, it is often difficult to interpret these results, where interaction effects between particles can be complex. Here the technique of scanning probe microscopy is used to characterize the nanoscale properties of spray dried model milk powders in order to investigate the surface properties of the powders.
Resumo:
We present an analytical solution of a mixed boundary value problem for an unbounded 2D doubly periodic domain which is a model of a composite material with mixed imperfect interface conditions. We find the effective conductivity of the composite material with mixed imperfect interface conditions, and also give numerical analysis of several of their properties such as temperature and flux.
Resumo:
The dieletric relaxation properties of thermosetting material nanocomposites based on spherosilicate nanoplatforms were studied from room temperature to 170 degrees C, varying the frequency from 10 to 1000 KHz. Permittivity (epsilon'), dielectric loss (epsilon ''), and activation energy (E-a) were calculated. The results of dielectric relaxation were confirmed by those of the final properties. The dielectric loss amplitude decreases with increasing ODPG content until about 70-73 wt % and slightly increases at higher ODPG content. This means that the increasing of the ODPG content in the composite samples decreases the number of pendants groups and/or increases crosslink densitv, causing decreased motion of organic tethers, and subsequently decreasing of the dipolar mobility. The results of apparent activation energy, fracture toughness and tensile modulus mechanical properties show the same profile with respect to ODPG content, in the sense that they exhibit maxima around 70 wt % ODPG. For the ODPG/MDA composites, this formulation of 70 wt % ODPG containing excess of amine is not composition where the highest crosslinked density is reached. This implies that the best mechanical properties and E-a are provided by some degree of chain flexibility. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.
Resumo:
A major challenge of the 21st century will be to generate transportation fuels using feedstocks such as lignocellulosic waste materials as a substitute for existing fossil and nuclear fuels. The advantages of lignocellulosics as a feedstock material are that they are abundant, sustainable and carbon-neutral. To improve the economics of producing liquid transportation fuels from lignocellulosic biomass, the development of value-added products from lignin, a major component of lignocellulosics, is necessary. Lignins produced from black liquor through the fractionation of sugarcane bagasse with soda and organic solvents have been characterised by physical, chemical and thermal means. The soda lignin fractions have different physico-chemical and thermal properties from one another. Some of these properties have been compared to bagasse lignin extracted with aqueous ethanol.
Resumo:
In tissue engineering, porous scaffolds are used as a temporal support for tissue regeneration through cell adhesion, proliferation and differentiation. Besides applying a suitable material that is both biocompatible and biodegradable, the architectural design of the porous scaffold can be of essential for successful tissue regeneration. The architecture is of great influence on mechanical properties and transport properties of nutrients and metabolites1.
Resumo:
Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.
Resumo:
For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds
Resumo:
This paper presents a material model to simulate load induced cracking in Reinforced Concrete (RC) elements in ABAQUS finite element package. Two numerical material models are used and combined to simulate complete stress-strain behaviour of concrete under compression and tension including damage properties. Both numerical techniques used in the present material model are capable of developing the stress-strain curves including strain softening regimes only using ultimate compressive strength of concrete, which is easily and practically obtainable for many of the existing RC structures or those to be built. Therefore, the method proposed in this paper is valuable in assessing existing RC structures in the absence of more detailed test results. The numerical models are slightly modified from the original versions to be comparable with the damaged plasticity model used in ABAQUS. The model is validated using different experiment results for RC beam elements presented in the literature. The results indicate a good agreement with load vs. displacement curve and observed crack patterns.
Resumo:
Hydrogels, which are three-dimensional crosslinked hydrophilic polymers, have been used and studied widely as vehicles for drug delivery due to their good biocompatibility. Traditional methods to load therapeutic proteins into hydrogels have some disadvantages. Biological activity of drugs or proteins can be compromised during polymerization process or the process of loading protein can be really timeconsuming. Therefore, different loading methods have been investigated. Based on the theory of electrophoresis, an electrochemical gradient can be used to transport proteins into hydrogels. Therefore, an electrophoretic method was used to load protein in this study. Chemically and radiation crosslinked polyacrylamide was used to set up the model to load protein electrophoretically into hydrogels. Different methods to prepare the polymers have been studied and have shown the effect of the crosslinker (bisacrylamide) concentration on the protein loading and release behaviour. The mechanism of protein release from the hydrogels was anomalous diffusion (i.e. the process was non-Fickian). The UV-Vis spectra of proteins before and after reduction show that the bioactivities of proteins after release from hydrogel were maintained. Due to the concern of cytotoxicity of residual monomer in polyacrylamide, poly(2-hydroxyethyl- methacrylate) (pHEMA) was used as the second tested material. In order to control the pore size, a polyethylene glycol (PEG) porogen was introduced to the pHEMA. The hydrogel disintegrated after immersion in water indicating that the swelling forces exceeded the strength of the material. In order to understand the cause of the disintegration, several different conditions of crosslinker concentration and preparation method were studied. However, the disintegration of the hydrogel still occurred after immersion in water principally due to osmotic forces. A hydrogel suitable for drug delivery needs to be biocompatible and also robust. Therefore, an approach to improving the mechanical properties of the porogen-containing pHEMA hydrogel by introduction of an inter-penetrating network (IPN) into the hydrogel system has been researched. A double network was formed by the introduction of further HEMA solution into the system by both electrophoresis and slow diffusion. Raman spectroscopy was used to observe the diffusion of HEMA into the hydrogel prior to further crosslinking by ã-irradiation. The protein loading and release behaviour from the hydrogel showing enhanced mechanical property was also studied. Biocompatibility is a very important factor for the biomedical application of hydrogels. Different hydrogels have been studied on both a three-dimensional HSE model and a HSE wound model for their biocompatibilities. They did not show any detrimental effect to the keratinocyte cells. From the results reported above, these hydrogels show good biocompatibility in both models. Due to the advantage of the hydrogels such as the ability to absorb and deliver protein or drugs, they have potential to be used as topical materials for wound healing or other biomedical applications.