924 resultados para Maria Carolina, Queen, consort of Ferdinando I, King of the Two Sicilies, 1752-1814.
Resumo:
Several patients with chronic critical limb ischemia show angiographically an isolated popliteal segment (IPS) and a single calf vessel (SCV) with no direct communication to the former. In this situation a bypass can be inserted from the common femoral artery to the IPS or to the SCV. The results of 73 bypass procedures--40 to an isolated popliteal segment and 33 to a single calf vessel for limb salvage--were prospectively evaluated. Eighty percent of the grafts were performed with an autogenous saphenous vein (ASV), the rest with a thin wall polytetrafluoroethylene (PTFE) prosthesis. The mean age of our patients was 75 years and many suffered from cardiovascular disease. The operative mortality rate was 3% and the mean postoperative survival 32 months. Three year patency and limb salvage rates for ASV grafts was 83% and 87% (IPS) respectively 77% and 76% (MCV); for PTFE grafts 58% and 88% (IPS) respectively 17% and 50% (MCV). There was no significant difference found in patency and limb salvage rates of the two procedures if the graft was an autogenous saphenous vein (p > 0.05). The PTFE prosthesis was only suitable for grafts inserted to the isolated popliteal segment.
Resumo:
The cyclonic circulation of the Atlantic subpolar gyre is a key mechanism for North Atlantic climate variability on a wide range of time scales. It is generally accepted that it is driven by both cyclonic winds and buoyancy forcing, yet the individual importance and dynamical interactions of the two contributions remain unclear. The authors propose a simplified four-box model representing the convective basin of the Labrador Sea and its shallow and deep boundary current system, the western subpolar gyre. Convective heat loss drives a baroclinic flow of relatively light water around the dense center. Eddy salt flux from the boundary current to the center increases with a stronger circulation, favors the formation of dense waters, and thereby sustains a strong baroclinic flow, approximately 10%–25% of the total. In contrast, when the baroclinic flow is not active, surface waters may be too fresh to convect, and a buoyancy-driven circulation cannot develop. This situation corresponds to a second stable circulation mode. A hysteresis is found for variations in surface freshwater flux and the salinity of the near-surface boundary current. An analytical solution is presented and analyzed.
Resumo:
Atmospheric circulation modes are important concepts in understanding the variability of atmospheric dynamics. Assuming their spatial patterns to be fixed, such modes are often described by simple indices from rather short observational data sets. The increasing length of reanalysis products allows these concepts and assumptions to be scrutinised. Here we investigate the stability of spatial patterns of Northern Hemisphere teleconnections by using the Twentieth Century Reanalysis as well as several control and transient millennium-scale simulations with coupled models. The observed and simulated centre of action of the two major teleconnection patterns, the North Atlantic Oscillation (NAO) and to some extent the Pacific North American (PNA), are not stable in time. The currently observed dipole pattern of the NAO, its centre of action over Iceland and the Azores, split into a north–south dipole pattern in the western Atlantic with a wave train pattern in the eastern part, connecting the British Isles with West Greenland and the eastern Mediterranean during the period 1940–1969 AD. The PNA centres of action over Canada are shifted southwards and over Florida into the Gulf of Mexico during the period 1915–1944 AD. The analysis further shows that shifts in the centres of action of either teleconnection pattern are not related to changes in the external forcing applied in transient simulations of the last millennium. Such shifts in their centres of action are accompanied by changes in the relation of local precipitation and temperature with the overlying atmospheric mode. These findings further undermine the assumption of stationarity between local climate/proxy variability and large-scale dynamics inherent when using proxy-based reconstructions of atmospheric modes, and call for a more robust understanding of atmospheric variability on decadal timescales.
Resumo:
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.
Resumo:
During postnatal growth the parenchymal septa of rat lung undergo an impressive restructuring. While immature septa are thick and contain two capillary layers, mature septa are slender and contain a single microvascular network. Using the Mercox casting technique and scanning electron microscopy, we investigated the mode and the timing of the transformation of the pulmonary capillary bed. During the third postnatal week the parenchymal septa rapidly mature to match adult morphology. Even in adult lungs, however, remnants of the immature status are present: A capillary bilayer is regularly found at the base and the tip of the septa. Our observations support the concept that reduction of intervening tissue, partial fusion of the two capillary networks, and preferential growth lead to the mature vascular arrangement. The fact that true mature interalveolar septa show a denser capillary network than alveolar walls abutting onto pleura, bronchi, or larger vessels is consonant with the fusion theory. Towards the nonparenchyma, the capillary network surrounding every airspace had no counterpart to fuse with. From quantitative data it can be calculated that owing to lung growth, mesh size should increase more than four times between birth and adult age. The adult lung network, however, is denser than the one in young animals. This means that new meshes must be added during growth. We propose that small holes observed in sheet-like regions of the microvasculature enlarge to form new capillary meshes. With this mechanism of in-itself or intussusceptional growth, sprouting of individual capillary segments to increase network size is no longer needed.
Resumo:
Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.
Resumo:
Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.
Resumo:
Aims: The reported rate of stent thrombosis (ST) after drug-eluting stent (DES) implantation varies among registries. To investigate differences in baseline characteristics and clinical outcome in European and Japanese all-comers registries, we performed a pooled analysis of patient-level data. Methods and results: The j-Cypher registry (JC) is a multicentre observational study conducted in Japan, including 12,824 patients undergoing SES implantation. From the Bern-Rotterdam registry (BR) enrolled at two academic hospitals in Switzerland and the Netherlands, 3,823 patients with SES were included in the current analysis. Patients in BR were younger, more frequently smokers and presented more frequently with ST-elevation myocardial infarction (MI). Conversely, JC patients more frequently had diabetes and hypertension. At five years, the definite ST rate was significantly lower in JC than BR (JC 1.6% vs. BR 3.3%, p<0.001), while the unadjusted mortality tended to be lower in BR than in JC (BR 13.2% vs. JC 14.4%, log-rank p=0.052). After adjustment, the j-Cypher registry was associated with a significantly lower risk of all-cause mortality (HR 0.56, 95% CI: 0.49-0.64) as well as definite stent thrombosis (HR 0.46, 95% CI: 0.35-0.61). Conclusions: The baseline characteristics of the two large registries were different. After statistical adjustment, JC was associated with lower mortality and ST.
Resumo:
Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium-proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium-proton antiport in NhaA.
Resumo:
PURPOSE Assessment of experience gained by local referring physicians with the procedure of coronary computed tomographic angiography (CCTA) in the everyday clinical routine. MATERIALS AND METHODS A 25-item questionnaire was sent to 179 physicians, who together had referred a total of 1986 patients for CCTA. They were asked about their experience to date with CCTA, the indications for coronary imaging, and their practice in referring patients for noninvasive CCTA or invasive catheter angiography. RESULTS 53 questionnaires (30 %) were assessable, corresponding to more than 72 % of the patients referred. Of the referring physicians who responded, 94 % saw a concrete advantage of CCTA in the treatment of patients, whereby 87 % were 'satisfied' or 'very satisfied' with the reporting. For excluding coronary heart disease (CHD) where there was a low pre-test probability of disease, the physicians considered CCTA to be superior to conventional coronary diagnosis (4.2 on a scale of 1 - 5) and vice versa for acute coronary syndrome (1.6 of 5). The main reasons for unsuitability of CCTA for CT diagnosis were claustrophobia and the absence of a sinus rhythm. The level of exposure to radiation in CCTA was estimated correctly by only 42 % of the referring physicians. 90 % of the physicians reported that their patients evaluated their coronary CT overall as 'positive' or 'neutral', while 87 % of the physicians whose patients had undergone both procedures reported that the patients had experienced CCTA as the less disagreeable of the two. CONCLUSION CCTA is accepted by the referring physicians as an alternative imaging procedure for the exclusion of CHD and received a predominantly positive assessment from both the referring physicians and the patients.
Resumo:
The OPERA detector, designed to search for νμ → ντ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected chargeseparated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio Rμ ≡ Nμ+/Nμ− was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowedminimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1–20 TeV investigated by OPERA, Rμ is well described by a parametric model including only pion and kaon contributions to themuon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to 200 TeV/nucleon primary energy.
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using power spectral densities (PSDs) of the record of a single isotope species can be biased by uncertainties in spectral properties of the isotope signal prior to diffusion. By using a second water isotope and calculating the difference in diffusion lengths between the two isotopes, this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation-based method proves to be a good alternative for the PSD method as it yields precision equal to or somewhat higher than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. In addition to application to synthetic data the two methods are tested on stable-isotope records from the EPICA (European Project for Ice Coring in Antarctica) ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.
Resumo:
Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.
Resumo:
The genetic variability of milk protein genes may influence the nutritive value or processing and functional properties of the milk. While numerous protein variants are known in ruminants, knowledge about milk protein variability in horses is still limited. Mare's milk is, however, produced for human consumption in many countries. Beta-lactoglobulin belonging to the protein family of lipocalins, which are known as common food- and airborne allergens, is a major whey protein. It is absent from human milk and thus a key agent in provoking cow's milk protein allergy. Mare's milk is, however, usually better tolerated by most affected people. Several functions of β-lactoglobulin have been discussed, but its ultimate physiological role remains unclear. In the current study, the open reading frames of the two equine β-lactoglobulin paralogues LGB1 and LGB2 were re-sequenced in 249 horses belonging to 14 different breeds in order to predict the existence of protein variants at the DNA-level. Thereby, only a single signal peptide variant of LGB1, but 10 different putative protein variants of LGB2 were identified. In horses, both genes are expressed and in such this is a striking previously unknown difference in genetic variability between the two genes. It can be assumed that LGB1 is the ancestral paralogue, which has an essential function causing a high selection pressure. As horses have very low milk fat content this unknown function might well be related to vitamin-uptake. Further studies are, however, needed, to elucidate the properties of the different gene products.