855 resultados para Magnetic Resonance Imaging (MRI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To determine the feasibility of evaluating surgically induced hepatocyte damage using gadoxetate disodium (Gd-EOB-DTPA) as a marker for viable hepatocytes at magnetic resonance imaging (MRI) after liver resection. MATERIAL AND METHODS: Fifteen patients were prospectively enrolled in this institutional review board-approved study prior to elective liver resection after informed consent. Three Tesla MRI was performed 3-7 days after surgery. Three-dimensional (3D) T1-weighted (W) volumetric interpolated breath-hold gradient echo (VIBE) sequences covering the liver were acquired before and 20 min after Gd-EOB-DTPA administration. The signal-to-noise ratio (SNR) was used to compare the uptake of Gd-EOB-DTPA in healthy liver tissue and in liver tissue adjacent to the resection border applying paired Student's t-test. Correlations with potential influencing factors (blood loss, duration of intervention, age, pre-existing liver diseases, postoperative change of resection surface) were calculated using Pearson's correlation coefficient. RESULTS: Before Gd-EOB-DTPA administration the SNR did not differ significantly (p = 0.052) between healthy liver tissue adjacent to untouched liver borders [59.55 ± 25.46 (SD)] and the liver tissue compartment close to the resection surface (63.31 ± 27.24). During the hepatocyte-specific phase, the surgical site showed a significantly (p = 0.04) lower SNR (69.44 ± 24.23) compared to the healthy site (78.45 ± 27.71). Dynamic analyses revealed a significantly lower increase (p = 0.008) in signal intensity in the healthy tissue compared to the resection border compartment. CONCLUSION: EOB-DTPA-enhanced MRI may have the potential to be an effective non-invasive tool for detecting hepatocyte damage after liver resection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Syncope describes a sudden and brief transient loss of consciousness (TLOC) with postural failure due to cerebral global hypoperfusion. The term TLOC is used when the cause is either unrelated to cerebral hypoperfusion or is unknown. The most common causes of syncopal TLOC include: (1) cardiogenic syncope (cardiac arrhythmias, structural cardiac diseases, others); (2) orthostatic hypotension (due to drugs, hypovolemia, primary or secondary autonomic failure, others); (3) neurally mediated syncope (cardioinhibitory, vasodepressor, and mixed forms). Rarely neurologic disorders (such as epilepsy, transient ischemic attacks, and the subclavian steal syndrome) can lead to cerebal hypoperfusion and syncope. Nonsyncopal TLOC may be due to neurologic (epilepsy, sleep attacks, and other states with fluctuating vigilance), medical (hypoglycemia, drugs), psychiatric, or post-traumatic disorders. Basic diagnostic workup of TLOC includes a thorough history and physical examination, and a 12-lead electrocardiogram (ECG). Blood testing, electroencephalogram (EEG), magnetic resonance imaging (MRI) of the brain, echocardiography, head-up tilt test, carotid sinus massage, Holter monitoring, and loop recorders should be obtained only in specific contexts. Management strategies involve pharmacologic and nonpharmacologic interventions, and cardiac pacing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the accuracy of neurologic examination versus magnetic resonance imaging (MRI) in localization of cervical disk herniation and evaluate the usefulness of withdrawal reflex testing in dogs. DESIGN Retrospective case series. ANIMALS 35 client-owned dogs with a single-level cervical disk herniation as determined via MRI. PROCEDURES 1 of 2 board-certified neurologists performed a complete neurologic examination in each dog. Clinical signs of a cervical lesion included evidence of neck pain and tetraparesis. The withdrawal reflex was used for neuroanatomic localization (C1-C5 or C6-T2). Agreement between results of neurologic and MRI examinations was determined. RESULTS Agreement between neurologic and MRI diagnoses was 65.8%. In 11 dogs in which the lesion was clinically localized to the C6-T2 segment on the basis of a decreased withdrawal reflex in the forelimbs, MRI revealed an isolated C1-C5 disk lesion. In 1 dog, in which the lesion was suspected to be at the C1-C5 level, MRI revealed a C6-T2 lesion. Cranial cervical lesions were significantly associated with an incorrect neurologic diagnosis regarding site of the lesion. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the withdrawal reflex in dogs with cervical disk herniation is not reliable for determining the affected site and that a decreased withdrawal reflex does not always indicate a lesion from C6 to T2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerization- volume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The diagnostic value of a contrast-enhanced T2-weighted FLAIR sequence (ceFLAIR) in brain imaging is unclear. HYPOTHESIS/OBJECTIVES That the number of brain lesions detected with ceFLAIR would be no greater than the sum of lesions detected with nFLAIR and ceT1W sequence. ANIMALS One hundred and twenty-nine animals (108 dogs and 21 cats) undergoing magnetic resonance imaging (MRI) of the head between July 2010 and October 2011 were included in the study. METHODS A transverse ceFLAIR was added to a standard brain MRI protocol. Presence and number of lesions were determined based on all available MRI sequences by 3 examiners in consensus and lesion visibility was evaluated for nFLAIR, ceFLAIR, and ceT1W sequences. RESULTS Eighty-three lesions (58 intra-axial and 25 extra-axial) were identified in 51 patients. Five lesions were detected with nFLAIR alone, 2 with ceT1W alone, and 1 with ceFLAIR alone. Significantly higher numbers of lesions were detected using ceFLAIR than nFLAIR (76 versus 67 lesions; P = 0.04), in particular for lesions also detected with ceT1W images (53 versus 40; P =.01). There was no significant difference between the number of lesions detected with combined nFLAIR and ceT1W sequences compared to those detected with ceFLAIR (82 versus 76; P =.25). CONCLUSION AND CLINICAL IMPORTANCE Use of ceFLAIR as a complementary sequence to nFLAIR and ceT1W sequences did not improve the detection of brain lesions and cannot be recommended as part of a routine brain MRI protocol in dogs and cats with suspected brain lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 9-year-old Boxer dog was referred to the Veterinary Teaching Hospital of the University of Bern for a history of chronic neck pain and gait problems, which rapidly progressed to a non-ambulatory status. Magnetic resonance imaging (MRI) examination of the head revealed a large intra-axial space-occupying lesion that was divided in two portions interconnected by a thin isthmus at the level of the cerebellar tentorium. Histopathology revealed a biphasic malignant neoplasm composed of neuroepithelial and mesenchymal elements. The former displayed characteristics of conventional anaplastic oligodendroglioma involving brisk mitotic activity and glomeruloid microvascular proliferation on a background of a fibrillary round cells with "honeycomb-like" perinuclear vacuolation. Conversely, the sarcomatous moiety exhibited haphazard fascicles of spindle cells amidst an intricate mesh of pericellular basal lamina and broad bands of collagen. Both tumor cell populations immunoreacted for Olig-2 and – to a lesser extent – GFAP. In addition, the sarcomatous areas focally expressed vimentin, muscular actin, and smooth muscle actin. "Oligosarcoma" - an exquisitely uncommon pattern of oligodendroglial malignancy in humans - has not previously been reported to affect dogs, although oligodendroglioma is a common CNS tumor in this species. Whether canine oligosarcoma shares with its human counterpart not only morphological aspects, but also molecular signatures, clinical behavior and responsiveness to therapy merits further investigation. In humans, oligodendroglial differentiation tends to confer significant clinical advantage with respect to prognosis and adjuvant treatment options. The awareness of such hallmarks and the investigation of their impact on prognosis are crucial for improved therapeutical strategies in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Acetabular rim trimming is indicated in pincer hips with an oversized lunate surface but could result in a critically decreased size of the lunate surface in pincer hips with acetabular malorientation. There is a lack of detailed three-dimensional anatomy of lunate surface in pincer hips. Therefore, we questioned how does (1) size and (2) shape of the lunate surface differ among hips with different types of pincer impingement? METHOD We retrospectively compared size and shape of the lunate surface between acetabular retroversion (48 hips), deep acetabulum (34 hips), protrusio acetabuli (seven hips), normal acetabuli (30 hips), and hip dysplasia (45 hips). Using magnetic resonance imaging (MRI) arthrography with radial slices we measured size in percentage of the femoral head coverage and shape using the outer (inner) center-edge angles and width of lunate surface. RESULTS Hips with retroversion had a decreased size and deep hips had normal size of the lunate surface. Both had a normal shape of the outer acetabular rim. Protrusio hips had an increased size and a prominent outer acetabular rim. In all three types of pincer hips the acetabular fossa was increased. CONCLUSION Size and shape of the lunate surface differs substantially among different types of pincer impingement. In contrast to hips with protrusio acetabuli, retroverted and deep hips do not have an increased size of the lunate surface. Acetabular rim trimming in retroverted and deep hips should be performed with caution. Based on our results, acetabular reorientation would theoretically be the treatment of choice in retroverted hips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that most humans infected with Echinococcus spp. exhibit resistance to disease. When infection leads to disease, the parasite is partially controlled by host immunity: in case of immunocompetence, the normal alveolar echinococcosis (AE) or cystic echinococcosis (CE) situation, the metacestode grows slowly, and first clinical signs appear years after infection; in case of impaired immunity (AIDS; other immunodeficiencies), uncontrolled proliferation of the metacestode leads to rapidly progressing disease. Assessing Echinococcus multilocularis viability in vivo following therapeutic interventions in AE patients may be of tremendous benefit when compared with the invasive procedures used to perform biopsies. Current options are F18-fluorodeoxyglucose-positron emission tomography (FDG-PET), which visualizes periparasitic inflammation due to the metabolic activity of the metacestode, and measurement of antibodies against recEm18, a viability-associated protein, that rapidly regresses upon metacestode inactivation. For Echinococcus granulosus, similar prognosis-associated follow-up parameters are still lacking but a few candidates may be listed. Other possible markers include functional and diffusion-weighted Magnetic Resonance Imaging (MRI), and measurement of products from the parasite (circulating antigens or DNA), and from the host (inflammation markers, cytokines, or chemokines). Even though some of them have been promising in pilot studies, none has been properly validated in an appropriate number of patients until now to be recommended for further use in clinical settings. There is therefore still a need to develop reliable tools for improved viability assessment to provide the sufficient information needed to reliably withdraw anti-parasite benzimidazole chemotherapy, and a basis for the development of new alternative therapeutic tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE To determine the frequency of new ischaemic or hemorrhagic brain lesions on early follow-up magnetic resonance imaging (MRI) in patients with cervical artery dissection (CAD) and to investigate the relationship with antithrombotic treatment. METHODS This prospective observational study included consecutive CAD patients with ischaemic or non-ischaemic symptoms within the preceding 4 weeks. All patients had baseline brain MRI scans at the time of CAD diagnosis and follow-up MRI scans within 30 days thereafter. Ischaemic lesions were detected by diffusion-weighted imaging (DWI), intracerebral bleeds (ICBs) by paramagnetic-susceptible sequences. Outcome measures were any new DWI lesions or ICBs on follow-up MRI scans. Kaplan-Meier statistics and calculated odds ratios with 95% confidence intervals were used for lesion occurrence, baseline characteristics and type of antithrombotic treatment (antiplatelet versus anticoagulant). RESULTS Sixty-eight of 74 (92%) CAD patients were eligible for analysis. Median (interquartile range) time interval between baseline and follow-up MRI scans was 5 (3-10) days. New DWI lesions occurred in 17 (25%) patients with a cumulative 30-day incidence of 41.3% (standard error 8.6%). Occurrence of new DWI lesions was associated with stroke or transient ischaemic attack at presentation [7.86 (2.01-30.93)], occlusion of the dissected vessel [4.09 (1.24-13.55)] and presence of DWI lesions on baseline MRI [6.67 (1.70-26.13)]. The type of antithrombotic treatment had no impact either on occurrence of new DWI lesions [1.00 (0.32-3.15)] or on functional 6-month outcome [1.27 (0.41-3.94)]. No new ICBs were observed. CONCLUSION New ischaemic brain lesions occurred in a quarter of CAD patients, independently of the type of antithrombotic treatment. MRI findings could potentially serve as surrogate outcomes in pilot treatment trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article gives a review of the classification, diagnostic procedures and treatment of idiopathic inflammatory myopathies from a neurological point of view. The myositis syndromes can be subdivided into four groups, polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and necrotizing myopathy (NM), which substantially differ clinically and pathophysiologically. Myositis may also occur in association with cancer or autoimmune systemic diseases (overlap syndrome). Diagnosis of inflammatory myopathies is based on clinical symptoms, determination of creatine phosphokinase and acute phase parameters in blood (e.g. C-reactive protein and erythrocyte sedimentation rate), electromyography results and findings of magnetic resonance imaging (MRI) in muscle. A muscle biopsy is mandatory to confirm the diagnosis. High quality randomized controlled trials of treatment regimens for inflammatory myopathies are sparse; however, empirical experience indicates a clear effectiveness of immunosuppressive treatment of PM, DM and NM.