955 resultados para MONOSODIUM GLUTAMATE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To establish the genetic basis of Landau-Kleffner syndrome (LKS) in a cohort of two discordant monozygotic (MZ) twin pairs and 11 isolated cases. METHODS: We used a multifaceted approach to identify genetic risk factors for LKS. Array comparative genomic hybridization (CGH) was performed using the Agilent 180K array. Whole genome methylation profiling was undertaken in the two discordant twin pairs, three isolated LKS cases, and 12 control samples using the Illumina 27K array. Exome sequencing was undertaken in 13 patients with LKS including two sets of discordant MZ twins. Data were analyzed with respect to novel and rare variants, overlapping genes, variants in reported epilepsy genes, and pathway enrichment. RESULTS: A variant (cG1553A) was found in a single patient in the GRIN2A gene, causing an arginine to histidine change at site 518, a predicted glutamate binding site. Following copy number variation (CNV), methylation, and exome sequencing analysis, no single candidate gene was identified to cause LKS in the remaining cohort. However, a number of interesting additional candidate variants were identified including variants in RELN, BSN, EPHB2, and NID2. SIGNIFICANCE: A single mutation was identified in the GRIN2A gene. This study has identified a number of additional candidate genes including RELN, BSN, EPHB2, and NID2. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown recently to release small molecules, such as the amino acids l-glutamate and d-serine as "gliotransmitters," which directly control the efficacy of adjacent synapses. However, it is still controversial whether gliotransmitters are released from a cytosolic pool or by Ca(2+)-dependent exocytosis from secretory vesicles, i.e., by a mechanism similar to the release of synaptic vesicles in synapses. Here we report that rat cortical astrocytes contain storage vesicles that display morphological and biochemical features similar to neuronal synaptic vesicles. These vesicles share some, but not all, membrane proteins with synaptic vesicles, including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) synaptobrevin 2, and contain both l-glutamate and d-serine. Furthermore, they show uptake of l-glutamate and d-serine that is driven by a proton electrochemical gradient. d-Serine uptake is associated with vesicle acidification and is dependent on chloride. Whereas l-serine is not transported, serine racemase, the synthesizing enzyme for d-serine, is anchored to the membrane of the vesicles, allowing local generation of d-serine. Finally, we reveal a previously unexpected mutual vesicular synergy between d-serine and l-glutamate filling in glia vesicles. We conclude that astrocytes contain vesicles capable of storing and releasing d-serine, l-glutamate, and most likely other neuromodulators in an activity-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome is an inherited disease with cognitive, behavioral, and neurologic manifestations, resulting from a single genetic mutation. A variety of treatments that target individual symptoms of fragile X syndrome are currently utilized with limited efficacy. Research in animal models has resulted in the development of potential novel pharmacologic treatments that target the underlying molecular defect in fragile X syndrome, rather than the resultant symptoms. This review describes recent advances in our understanding of the molecular basis of fragile X syndrome and summarizes the ongoing clinical research programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the cerebrospinal fluid of 26 drug-naive schizophrenics (DSM-III- R), we observed that the level of glutathione ([GSH]) and of its metabolite γ-Glu-Gln was decreased by 27% and 16% respectively. Using a new in-vivo method based on magnetic resonance spec- troscopy, [GSH] was measured in the medial prefrontal cortex of 18 schizophrenics and found to be 52 % lower than in controls (n = 20). This is consistent with the recently observed decreased mRNA levels in fibroblasts of patients (n=32) of the two GSH synthesizing en- zymes (glutathione synthetase (GSS), and glutamate-cysteine ligase M (GCLM) the modulatory subunit of glutamate-cysteine ligase). Moreover, the level of GCLM expression in fibroblasts correlates neg- atively with the psychopathology (positive, general and some nega- tive symptoms). Thus, the observed difference in gene expression is not only the cause of low brain [GSH], but is also related to the sever- ity of symptoms, suggesting that fibroblasts are adequate surrogate for brain tissue. A hypothesis was proposed, based on a central role of GSH in the pathophysiology of schizophrenia. GSH is an important endogenous redox regulator and neuroactive substance. GSH is pro- tecting cells from damage by reactive oxygen species generated, among others, by the metabolism of dopamine. A GSH deficit-in- duced oxidative stress would lead to lipid peroxidation and micro-le- sions in the surrounding of catecholamine terminals, affecting the synaptic contacts on dendritic spines of cortical neurones, where ex- citatory glutamatergic terminals converge with dopaminergic ones. This would lead to spines degeneration and abnormal nervous con- nections or structural disconnectivity, possibly responsible for posi- tive, perceptive and cognitive symptoms of schizophrenia. In addi- tion, a GSH deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental biochemical, cell biological and behav- ioral data are consistent with the proposed mechanism: decreasing pharmacologically [GSH] in experimental models, with or without blocking DA uptake (GBR12909), induces morphological and behav- ioral changes similar to those observed in patients. Dendritic spines: (a) In neuronal cultures, low [GSH] and DA induce decreased density of neural processes; (b) In developing rats (p5-p16), [GSH] deficit and GBR induce a decrease in normal spines in prefrontal pyramids and in GABA-parvalbumine but not of -calretinine immunoreactivity in anterior cingulate. NMDA-dependant synaptic plasticity: GSH deple- I/13 tion in hippocampal slices impairs long-term potentiation. Develop- ing rats with low [GSH] and GBR have deficit in olfactory integration and in object recognition which appears earlier in males than fe- males, in analogy to the delay of the psychosis onset between man and woman. In summary, a deficit of GSH and/or GSH-related enzymes during early development could constitute a major vulnerability fac- tor in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACTSchizophrenia is a major psychiatric disorder occurring with a prevalence of 1% in the worldwide population. It develops progressively with psychosis onset in late adolescence or earlyadulthood. The disorder can take many different facets and has a highly diffuse anddistributed neuropathology including deficits in major neurotransmitter systems,myelination, stress regulation, and metabolism. The delayed onset and the heterogeneouspathology suggest that schizophrenia is a developmental disease that arises from interplayof genetic and environmental factors during sensitive periods. Redox dysregulation due to animbalance between pro-oxidants and antioxidant defence mechanisms is among the riskfactors for schizophrenia. Glutathione (GSH) is the major cellular redox regulator andantioxidant. Levels of GSH are decreased in cerebrospinal fluid, prefrontal cortex and postmortemstriatum of schizophrenia patients. Moreover, polymorphisms of the key GSHsynthesizingenzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, are associatedwith the disease, suggesting that GSH deficit is of genetic origin. Here we used miceknockout (KO) for the GCLM gene, which display chronic GSH deficit (~70 to 80% decrease)to investigate the direct link between redox dysregulation and schizophrenia. Accordingly,we evaluated whether GCLM KO compared to normal wildtype mice display behavioralchanges that relate to schizophrenia symptoms and whether their brains showmorphological, functional or metabolic alterations that resemble those in patients.Moreover, we exposed pubertal GCLM mice to repeated mild stress and measured theirhormonal and behavioral stress reactivity. Our data show that chronic GSH deficit isassociated with altered emotion- and stress-related behaviors, deficient prepulse inhibition,pronounced amphetamine-induced hyperlocomotion but normal spatial learning andworking memory. These changes represent important schizophrenia endophenotypes.Moreover, this particular pattern of change indicates impairment of the ventralhippocampus (VH) and related circuitry as opposed to the dorsal hippocampus (DH), which isimplicated in spatial information processing. This is consistent with a selective deficit ofparvalbumin positive interneurons and gamma oscillation in the VH but not DH. Increasedlevels of circulating stress hormones in KO mice following pubertal stress corroborate VHdysfunction as it is involved in negative feedback control of the stress response. VHstructural and functional deficits are frequently found in the schizophrenic brain. Metabolicevaluation of the developing GCLM KO anterior cortex using in vivo magnetic resonancespectroscopy revealed elevated glutamine (Gln), glutamate (Glu), Gln/Glu and N-acetylaspartate(NAA) during the pre-pubertal period. Similar changes are reported in earlyschizophrenia. Overall, we observe phenotypic anomalies in GSH deficient GCLM KO micethat correspond to major schizophrenia endophenotypes. This supports an important rolefor redox dysregulation in schizophrenia and validates the GCLM KO mouse as model for thedisease. Moreover, our results indicate that puberty may be a sensitive period for redoxsensitivechanges highliting the importance of early intervention. Gln, Gln/Glu, Glu and NAAmay qualify as early metabolic biomarkers to identify young at-risk individuals. Since chronictreatment with NAC normalized most metabolic changes in GCLM KO mice, NAC may be oneadjunct treatment of choice for early intervention in patients.RESUMELa schizophrénie est une maladie psychiatrique majeure avec une prévalence de 1% dans lapopulation. Son développement est progressif, les premières psychoses apparaissant àl'adolescence ou au début de l'âge adulte. La maladie a plusieurs présentations et uneneuropathologie étendue, qui inclut des déficits neurochimiques, métaboliques, de lamyélination et de la régulation du stress. L'émergence tardive et l'hétérogénéité de lapathologie suggèrent que la schizophrénie est une maladie développementale, favorisée pardes facteurs génétiques et environnementaux durant des périodes sensibles. La dérégulationrédox, due à un déséquilibre entre facteurs pro-oxidantes et défenses anti-oxidantes,constitue un facteur de risque. Le glutathion (GSH) est le principal régulateur rédox et antioxidantdes cellules, ses taux sont diminués dans le liquide céphalorachidien, le cortexpréfrontal et le striatum de patients. De plus, des variations du gène codant la sous-unitémodulatrice (GCLM) de la glutamate-cystéine ligase, enzyme de synthèse du GSH, sontassociés la maladie, suggérant que le déficit observé chez les patients est d'originegénétique. Nous avons donc utilisé des souris ayant une délétion du gène GCLM (KO), quiont un déficit chronique en GSH (70-80%), afin d'étudier le lien entre une dérégulation rédoxet la schizophrénie. Nous avons évalué si ces souris présentent des altérationscomportementales analogues aux symptômes de la maladie, et des modificationsstructurelles, fonctionnelles et métaboliques au niveau du cerveau, ressemblant à celles despatients. De plus, nous avons soumis les souris à des stresses modérés durant la puberté,puis mesuré les réponses hormonales et comportementales. Les animaux présentent undéficit pré-attentionnel du traitement des informations moto-sensorielles, un déficit pourcertains apprentissages, une réponse accrue à l'amphétamine, mais leurs mémoires spatialeet de travail sont préservées. Ces atteintes comportementales sont analogues à certainsendophénotypes de la schizophrénie. De plus, ces changements comportementaux sontlargement expliqués par une perturbation morphologique et fonctionnelle de l'hippocampeventral (HV). Ainsi, nous avons observé un déficit sélectif des interneurones immunoréactifsà la parvalbumine et une désynchronisation neuronale dans l'HV. L'hippocampe dorsal,impliqué dans l'orientation spatiale, demeure en revanche intact. L'augmentationd'hormones de stress dans le sang des souris KO suite à un stress prépubertal soutien aussil'hypothèse d'une dysfonction de l'HV, connu pour moduler ce type de réponse. Des déficitsstructurels et fonctionnels dans l'hippocampe antérieur (ventral) ont d'ailleurs été rapportéschez des patients schizophrènes. Par de résonance magnétique, nous avons également suivile profil métabolique du le cortex antérieur au cours du développement postnatal des sourisKO. Ces mesures ont révélé des taux élevés de glutamine (Gln), glutamate (Glu), du ratioGln/Glu, et de N-acétyl-aspartate (NAA) durant la période prépubertale. Des altérationssimilaires sont décrites chez les patients durant la phase précoce. Nous avons donc révélédes anomalies phénotypiques chez les souris GCLM KO qui reflètent certainsendophénotypes de la schizophrénie. Nos résultats appuient donc le rôle d'une dérégulationrédox dans l'émergence de la maladie et le potentiel des souris KO comme modèle. De plus,cette étude met en évidence la puberté comme période particulièrement sensible à unedérégulation rédox, renforçant l'importance d'une intervention thérapeutique précoce. Dansce cadre, Gln, Gln/Glu, Glu and NAA seraient des biomarqueurs clés pour identifier de jeunesindividus à risque. De part son efficacité dans notre modèle, NAC pourrait être unesubstance de choix dans le traitement précoce des patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non-neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate-responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell-specific, robust, real-time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant-herbivore interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La schizophrénie est une maladie chronique qui touche 1% de la population mondiale. Elle¦comporte des facteurs de risque génétiques et environnementaux. Leur interaction pendant le¦développement du cerveau mène aux déficits de la synchronisation neuronale et aux¦dommages cellulaires qui prédisposent l'individu à développer, à l'âge adulte, la¦schizophrénie (Kim Do et al.). Kim Do et al (2009) ont découvert qu'une anomalie génétique¦de la synthèse du glutathion (GSH) est responsable de la dérégulation redox qui mène au¦stress oxydatif qui, à son tour, est impliqué dans la pathogénèse de la schizophrénie pendant le¦développement du cerveau. Le GSH protège les cellules contre les radicaux libres produits par¦le stress oxydatif. En effet, les radicaux libres provoquent la peroxydation des lipides,¦l'oxydation des protéines et des lésions au niveau de l'ADN, et par conséquent, des¦dommages cellulaires.¦Le GSH est produit par l'enzyme clé GCL (glutamate-cystéine ligase). Le GCL est composé¦de deux sous-unités: GCL-M (sous-unité modulatrice) et GCL-C (sous-unité catalytique). Des¦polymorphismes des gènes de GCL-M et GCL-C ont été trouvé associés avec la¦maladie (Tosic et al., 2006 ; Gysin et al., 2007). Dans cette étude, on se focalisera sur le TNR¦GAG (répétitions de tri-nucléotides) du GCL-C. En effet, GCL-C possède sur son codon¦START des variances avec 7, 8 ou 9 répétitions GAG générant ainsi six génotypes différents:¦7/7, 7/8, 7/9, 8/8, 8/9 et 9/9. Dans deux cohortes, les génotypes 8/7, 8/8, 8/9 et 9/9, appelés¦génotype à haute risque (HR), se trouvent en plus grand nombre chez les patients tandis que¦les génotypes 7/7 et 7/9 (génotypes à bas risque (BR)) sont plus nombreux chez les sujets¦témoins (Gysin et al., 2007). En plus, les analyses des cultures de fibroblastes montrent que¦chez les génotypes HR, en comparaison avec ceux à BR, l'expression de protéine de GCL-C,¦l'activité enzymatique de GCL et le taux de GSH sont nettement plus bas.¦Cette étude se base sur le DIGS (diagnostic interview for genetic studies), un entretien semistructuré¦qui récolte des données psychopathologiques. Grâce à cet outil, nous pouvons¦comparer les données des sujets avec les génotypes HR versus BR. Plus précisément, on va se¦focaliser sur le chapitre des psychoses du DIGS chez les schizophrènes, en se posant la¦question suivante: « Est-ce qu'il y a une différence des phénotypes entre BR et HR ? » .¦La méthode de travail va se focaliser sur : (a) revue de la littérature, (b) l'analyse et la¦compréhension du DIGS et (c) l'analyse, l'interprétation et la synthèse des résultats¦statistiques du chapitre « psychose » du DIGS.¦Les résultats nous indiquent une différence significative entre les deux groupes pour les¦symptômes suivants : (a) les idées délirantes de persécution, (b) la durée de l'émoussement¦affectif et des affects inappropriés et (c) les croyances inhabituelles ou pensées magiques¦pendant la phase prodromique.¦Étant donné que cette étude se base sur un échantillon assez restreint, il faudrait la consolider¦avec un plus grands nombre de cas et il serait intéressant de le reproduire dans une autre¦cohorte. En conclusion, le travail peut ouvrir de nouvelles perspectives, surtout pour les¦symptômes mal traités ou pas traités par les traitements actuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé large public: Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique précoce de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant les mécanismes cellulaires de la pathogenèse restent à identifier. Le métabolisme cérébral a ceci de remarquable qu'il repose sur la coopération entre deux types cellulaires, ainsi les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Ces fonctions astrocytaires sont essentielles au bon fonctionnement et à la survie neuronale; par conséquent, une altération de ces fonctions astrocytaires pourrait participer au développement de certaines maladies cérébrales. Le but de ce travail est, dans un premier temps, d'explorer les effets de médiateurs de la neuroinflammation (les cytokines pro-inflammatoires) et du peptide beta-amyloïde sur le métabolisme des astrocytes corticaux, en se focalisant sur les éléments en lien avec le métabolisme énergétique et le stress oxydatif. Puis, dans un second temps, de caractériser les conséquences pour les neurones des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus ici montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme énergétique du glucose, en diminuant l'apport potentiel de substrats énergétiques aux neurones. En plus de son effet propre, le peptide beta-amyloïde potentialise les effets des cytokines pro-inflammatoires. Or, dans le cerveau de patients atteints de la MA, les astrocytes sont exposés simultanément à ces deux types de substances. Les deux types de substances ont un effet ambivalent en termes de stress oxydatif. Ils induisent à la fois une augmentation de la libération de glutathion (potentiellement protecteur pour les neurones voisins) et la production d'espèces réactives de l'oxygène (potentiellement toxiques). Etant donné l'importance de la coopération entre astrocytes et neurones, ces modulations du métabolisme astrocytaire pourraient donc avoir un retentissement majeur sur les cellules environnantes, et en particulier sur la fonction et la survie neuronale. Résumé Les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, tels que le lactate, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique, précoce, de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant, les mécanismes cellulaires de la pathogenèse restent à identifier. Le but de ce travail est d'explorer les effets des cytokines pro-inflammatoires (Il-1 ß et TNFα) et du beta-amyloïde (Aß) sur le métabolisme du glucose des astrocytes corticaux en culture primaire ainsi que de caractériser les conséquences, pour la viabilité des neurones voisins, des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme glycolytique astrocytaire. Après 48 heures, le traitement avec TNFα et Il-lß cause une augmentation de la capture de glucose et de son métabolisme dans la voie des pentoses phosphates et dans le cycle de Krebs. A l'inverse, il cause une diminution de la libération de lactate et des stocks cellulaires de glycogène. En combinaison avec les cytokines tel qu'in vivo dans les cerveaux de patients atteints de MA, le peptide betaamyloïde potentialise les effets décrits ci-dessus. Isolément, le Aß cause une augmentation coordonnée de la capture de glucose et de toutes les voies de son métabolisme (libération de lactate, glycogenèse, voie des pentoses phosphate et cycle de Krebs). Les traitements altèrent peu les taux de glutathion intracellulaires, par contre ils augmentent massivement la libération de glutathion dans le milieu extracellulaire. A l'inverse, les deux types de traitements augmentent la production intracellulaire d'espèces réactives de l'oxygène (ROS). De plus, les cytokines pro-inflammatoires en combinaison augmentent massivement la production des ROS dans l'espace extracellulaire. Afin de caractériser l'impact de ces altérations métaboliques sur la viabilité des neurones environnants, un modèle de co-culture et des milieux conditionnés astrocytaires ont été utilisés. Les résultats montrent qu'en l'absence d'une source exogène d'antioxydants, la présence d'astrocytes favorise la viabilité neuronale ainsi que leur défense contre le stress oxydatif. Cette propriété n'est cependant pas modulée par les différents traitements. D'autre part, la présence d'astrocytes, et non de milieu conditionné, protège les neurones contre l'excitotoxicité due au glutamate. Les astrocytes prétraités (aussi bien avec le beta-amyloïde qu'avec les cytokines pro-inflammatoires) perdent cette propriété. Cet élément suggère que la perturbation du métabolisme astrocytaire causé par les cytokines pro-inflammatoires ou le beta-amyloïde pourrait participer à l'atteinte de la viabilité neuronale associée à certaines pathologies neurodégénératives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increased oxidative stress and alteration of the antioxidant systems have been observed in schizophrenia. Glutathione (GSH), a major redox regulator, is decreased in patients' cerebrospinal fluid, prefrontal cortex in vivo and striatum post-mortem tissue. Most importantly, there is genetic and functional evidence for the implication of the gene of the glutamate cysteine ligase (GCL) catalytic subunit, the key GSH-synthesizing enzyme. We have developed animal models for a GSH deficit to study the consequences of such deficit on the brain development. A GSH deficit combined with elevated dopamine (DA) during development leads to reduced parvalbumin (PV) expression in a subclass of GABA interneurons in rat anterior cingulate cortex (ACC). Similar changes are observed in postmortem brain tissue of schizophrenic patients. GSH dysregulation increases vulnerability to oxidative stress, that in turn could lead to cortical circuit anomalies in the schizophrenic brain. In the present study, we use a GCL modulatory subunit (GCLM) knock-out (KO) mouse model that presents up to 80% decreased brain GSH levels. During postnatal development, a subgroup of animals from each genotype is exposed to elevated oxidative stress induced by treatment with the DA reuptake inhibitor GBR12909. Results reveal a significant genotype-specific delay International Congress on Schizophrenia Research 136 10. 10. Neuroanatomy, Animal Downloaded from http://schizophreniabulletin.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 18, 2010 in cortical PV expression at postnatal day P10 in GCLM-KO mice, as compared to wild-type. This effect seems to be further exaggerated in animals treated with GBR12909 from P5 to P10. At P20, PV expression is no longer significantly reduced in GCLM-KO ACC without GBR but is reduced if GBR is applied from P10 to P20. However, our result show that GCLM-KO mice exhibit increased oxidative stress, cortical altered myelin development as shown by MBP marker, and more specifically impairment of the peri-neuronal net known to modulate PV connectivity. In addition, we also observe a reduced PV expression in the ventro-temporal hippocampus of adult GCLM-KO mice, suggesting that anomalies of the PV interneurons prevail at least in some brain regions throughout the adulthood. Interestingly, the power of kainate-induced gamma oscillations, known to be dependent on proper activation of PV interneuron's, is also lower in hippocampal slices of adult GCLM KO mice. These results suggest that the PV positive GABA interneurons is particularly vulnerable to increased oxidative stress

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractEstablishment of a functional nervous system occurs through an orchestrated multistep process during embryogenesis. As dendrites are the primary sites of synaptic connections, development of dendritic arborization is essential for the formation of functional neural circuits. Maturation of dendritic arbor occurs through dynamic processes that are regulated by intrinsic genetic factors and external signals, such as environmental stimuli, neuronal activity and growth factors. Among the latter, the neurotrophic factor BDNF is a key regulator of dendritic growth. However, the mechanisms by which BDNF controls dendritic development remain elusive.In this study, we first showed that activation of the MAPK signaling pathway and phosphorylation of the transcription factor CREB are required to mediate the effects of BDNF on dendritic development of cortical neurons. However, phosphorylation of CREB alone is not sufficient to induce dendritic growth in response to BDNF. Thus, by using a mutant form of CREB unable to bind its coactivator CRTC1, we demonstrated that BDNF-induced dendritic elaboration requires the functional interaction between CREB and CRTC1. Consistent with these observations, inhibition of CRTC1 expression by shRNA-mediated knockdown was found to suppress the effects of BDNF on dendritic length and branching of cortical neurons.The nuclear translocation of CRTC1, a step necessary for the interaction between CREB and CRTC1, was shown to result from the activation of NMD A receptors by glutamate, leading to the dephosphorylation of CRTC1 by the protein phosphatase calcineurin. In line with these findings, prevention of CRTC1 nuclear translocation in the absence of glutamate, or by inhibiting NMDA receptors or calcineurin suppressed the promotion of dendritic growth by BDNF.Increasing evidence supports a role for the growth factor HGF in the regulation of dendritic morphology during brain development. Despite these observations, little is known about the cellular mechanisms underlying the effects of HGF on dendritic elaboration of cortical neurons. The second part of this study was aimed at elucidating the cellular processes that mediate the effects of HGF on dendritic differentiation. We found that HGF increases cortical dendritic growth through mechanisms that involve MAPK-dependent phosphorylation of CREB, and interaction of CREB with its coactivator CRTC1. These data indicate that the mechanisms underlying the promotion of dendritic growth by HGF are similar to those that mediate the effects of BDNF, suggesting that the role of CREB and CRTC1 in the regulation of dendritic development may not be limited to HGF and BDNF, but may extend to other neurotrophic factors that control dendritic differentiation.Together, these results identify a previously unrecognized mechanism by which CREB and its coactivator CRTC1 mediate the effects of BDNF and HGF on dendritic growth of cortical neurons. Moreover, these data highlight the important role of the cooperation between BDNF/HGF and glutamate that converges on CREB to stimulate the expression of genes that contribute to the development of dendritic arborization.RésuméL'établissement d'un système nerveux fonctionnel s'accomplit grâce à des mécanismes précis, orchestrés en plusieurs étapes au cours de l'embryogenèse. Les dendrites étant les principaux sites de connexions synaptiques, le développement de l'arborisation dendritique est essentiel à la formation de circuits neuronaux fonctionnels. La maturation de l'arbre dendritique s'effectue grâce à des processus dynamiques qui sont régulés par des facteurs génétiques intrinsèques ainsi que par des facteurs externes tels que les stimuli environnementaux, l'activité neuronale ou les facteurs de croissance. Parmi ces derniers, le facteur neurotrophique BDNF est - connu pour être un régulateur clé de la croissance dendritique. Cependant, les mécanismes par lesquels BDNF contrôle le développement dendritique demeurent mal connus.Au cours de cette étude, nous avons montré dans un premier temps que l'activation de la voie de signalisation de la MAPK et la phosphorylation du facteur de transcription CREB sont nécessaires aux effets du BDNF sur le développement dendritique des neurones corticaux. Toutefois, la phosphorylation de CREB en tant que telle n'est pas sûffisante pour permettre la pousse des dendrites en réponse au BDNF. Ainsi, en utilisant une forme mutée de CREB incapable de se lier à son coactivateur CRTC1, nous avons démontré que l'élaboration des dendrites induite par le BDNF nécessite également une interaction fonctionnelle entre CREB et CRTC1. Ces résultats ont été confirmés par d'autres expériences qui ont montré que l'inhibition de l'expression de CRTC1 par l'intermédiaire de shRNA supprime les effets du BDNF sur la longueur et le branchement dendritique des neurones corticaux.Les résultats obtenus au cours de ce travail montrent également que la translocation nucléaire de CRTC1, qui est une étape nécessaire à l'interaction entre CREB et CRTC1, résulte de l'activation des récepteurs NMDA par le glutamate, entraînant la déphosphorylation de CRTC1 par la protéine phosphatase calcineurine. De plus, le blocage de la translocation nucléaire de CRTC1 en absence de glutamate, ou suite à l'inhibition des récepteurs NMDA ou de la calcineurine, supprime complètement la pousse des dendrites induite par le BDNF.De nombreuses d'évidences indiquent que le facteur de croissance HGF joue également un rôle important dans la régulation de la morphologie dendritique au cours du développement cérébral. Malgré ces observations, peu d'éléments sont connus quant aux mécanismes cellulaires qui sous-tendent les effets du HGF sur la croissance dendritique des neurones corticaux. Le but de la seconde partie de cette étude a eu pour but d'élucider les processus cellulaires responsables des effets du HGF sur la différenciation dendritique des neurones corticaux. Au cours de ces expériences, nous avons pu mettre en évidence que le HGF induit la pousse dendritique par des mécanismes qui impliquent la phosphorylation de CREB par la MAPK, et l'interaction de CREB avec son coactivateur CRTC1. Ces données indiquent que les mécanismes impliqués dans la stimulation de la croissance dendritique par le HGF sont similaires à ceux régulant les effets du BDNF, ce qui suggère que le rôle de CREB et de CRTC1 dans la régulation du développement dendritique n'est vraisemblablement pas limité aux effets du HGF ou du BDNF, mais pourrait s'étendre à d'autres facteurs neurotrophiques qui contrôlent la différenciation dendritique.En conclusion, ces résultats ont permis l'identification d'un nouveau mécanisme par lequel CREB et son coactivateur CRTC1 transmettent les effets du BDNF et du HGF sur la croissance dendritique de neurones corticaux. Ces observations mettent également en évidence le rôle important joué par la coopération entre BDNF/HGF et le glutamate, dans l'activation de CREB ainsi que dans l'expression de gènes qui participent au développement de l'arborisation dendritique des neurones corticaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Glutathione (GSH) is the major cellular redox-regulator and antioxidant. Redox-imbalance due to genetically impaired GSH synthesis is among the risk factors for schizophrenia. Here we used a mouse model with chronic GSH deficit induced by knockout (KO) of the key GSH-synthesizing enzyme, glutamate-cysteine ligase modulatory subunit (GCLM).¦METHODS: With high-resolution magnetic resonance spectroscopy at 14.1 T, we determined the neurochemical profile of GCLM-KO, heterozygous, and wild-type mice in anterior cortex throughout development in a longitudinal study design.¦RESULTS: Chronic GSH deficit was accompanied by an elevation of glutamine (Gln), glutamate (Glu), Gln/Glu, N-acetylaspartate, myo-Inositol, lactate, and alanine. Changes were predominantly present at prepubertal ages (postnatal days 20 and 30). Treatment with N-acetylcysteine from gestation on normalized most neurochemical alterations to wild-type level.¦CONCLUSIONS: Changes observed in GCLM-KO anterior cortex, notably the increase in Gln, Glu, and Gln/Glu, were similar to those reported in early schizophrenia, emphasizing the link between redox imbalance and the disease and validating the model. The data also highlight the prepubertal period as a sensitive time for redox-related neurochemical changes and demonstrate beneficial effects of early N-acetylcysteine treatment. Moreover, the data demonstrate the translational value of magnetic resonance spectroscopy to study brain disease in preclinical models.