995 resultados para METABOLIC COMPLICATIONS
Resumo:
Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height(2) (H(2)), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI-FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H(2)) and an FFM index (FFM/H(2)), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome.
Resumo:
Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determined SLE- markers (plasma anti-ds-DNA antibodies, splenic regulatory T cells (Tregs) and cytokines, proteinuria and renal histology) and MS-markers (plasma glucose, non-esterified fatty acids, triglycerides, insulin and leptin, liver triglycerides, visceral adipose tissue, liver and adipose tissue expression of 86 insulin signaling-related genes) in 8-, 16-, 24-, and 36-week old BWF1 and control New-Zealand-White female mice. Up to week 16, BWF1 mice showed MS-markers (hyperleptinemia, hyperinsulinemia, fatty liver and visceral adipose tissue) that disappeared at week 36, when plasma anti-dsDNA antibodies, lupus nephritis and a pro-autoimmune cytokine profile were detected. BWF1 mice had hyperleptinemia and high splenic Tregs till week 16, thereby pointing to leptin resistance, as confirmed by the lack of increased liver P-Tyr-STAT-3. Hyperinsulinemia was associated with a down-regulation of insulin related-genes only in adipose tissue, whereas expression of liver mammalian target of rapamicyn (mTOR) was increased. Although leptin resistance presented early in BWF1 mice can slow-down the progression of autoimmunity, our results suggest that sustained insulin stimulation of organs, such as liver and probably kidneys, facilitates the over-expression and activity of mTOR and the development of SLE.
Complications of different ventilation strategies in endoscopic laryngeal surgery: a 10-year review.
Resumo:
BACKGROUND: Spontaneous ventilation, mechanical controlled ventilation, apneic intermittent ventilation, and jet ventilation are commonly used during interventional suspension microlaryngoscopy. The aim of this study was to investigate specific complications of each technique, with special emphasis on transtracheal and transglottal jet ventilation. METHODS: The authors performed a retrospective single-institution analysis of a case series of 1,093 microlaryngoscopies performed in 661 patients between January 1994 and January 2004. Data were collected from two separate prospective databases. Feasibility and complications encountered with each technique of ventilation were analyzed as main outcome measures. RESULTS: During 1,093 suspension microlaryngoscopies, ventilation was supplied by mechanical controlled ventilation via small endotracheal tubes (n = 200), intermittent apneic ventilation (n = 159), transtracheal jet ventilation (n = 265), or transglottal jet ventilation (n = 469). Twenty-nine minor and 4 major complications occurred. Seventy-five percent of the patients with major events had an American Society of Anesthesiologists physical status classification of III. Five laryngospasms were observed with apneic intermittent ventilation. All other 24 complications (including 7 barotrauma) occurred during jet ventilation. Transtracheal jet ventilation was associated with a significantly higher complication rate than transglottal jet ventilation (P < 0.0001; odds ratio, 4.3 [95% confidence interval, 1.9-10.0]). All severe complications were related to barotraumas resulting from airway outflow obstruction during jet ventilation, most often laryngospasms. CONCLUSIONS: The use of a transtracheal cannula was the major independent risk factor for complications during jet ventilation for interventional microlaryngoscopy. The anesthetist's vigilance in clinically detecting and preventing outflow airway obstruction remains the best prevention of barotrauma during subglottic jet ventilation.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
Aim: The obesity epidemic has increased the number of obese patients admitted to the ICU. In vitro studies suggest that adipose tissue response to inflammation is enhanced: in vivo data are not conclusive yet. The aim of this study was to test the physiologic response of healthy obese subjects to a standardized intravenous LPS challenge.Methods: Prospective single-blind, randomized, cross-over study in eight subjects (four men, four women), aged 34 +/- 7 years, BMI 34.7 +/- 4.2, without glucose intolerance and lipid abnormalities, testing the impact of intravenous LPS (2 ng kg(-1) of actual body weight) versus placebo.Results: Temperature, hemodynamic variables, indirect calorimetry and blood samples (TNF-alpha, IL-6, stress hormones, hs-CRP) were collected. After LPS temperature, heart rate. TNF-alpha and IL-6 concentrations and stress hormones (cortisol and glucagon) increased significantly, with maximal responses between 120 and 240 min after the injection. The pattern, the timing and the magnitude of change were similar to those observed in lean subjects.Conclusion: This study shows that healthy obese subjects have a similar response pattern to intravenous LPS as described in lean subjects.
Resumo:
BACKGROUND AND PURPOSE: Hyperglycemia after stroke is associated with larger infarct volume and poorer functional outcome. In an animal stroke model, the association between serum glucose and infarct volume is described by a U-shaped curve with a nadir ≈7 mmol/L. However, a similar curve in human studies was never reported. The objective of the present study is to investigate the association between serum glucose levels and functional outcome in patients with acute ischemic stroke. METHODS: We analyzed 1446 consecutive patients with acute ischemic stroke. Serum glucose was measured on admission at the emergency department together with multiple other metabolic, clinical, and radiological parameters. National Institutes of Health Stroke Scale (NIHSS) score was recorded at 24 hours, and Rankin score was recorded at 3 and 12 months. The association between serum glucose and favorable outcome (Rankin score ≤2) was explored in univariate and multivariate analysis. The model was further analyzed in a robust regression model based on fractional polynomial (-2-2) functions. RESULTS: Serum glucose is independently correlated with functional outcome at 12 months (OR, 1.15; P=0.01). Other predictors of outcome include admission NIHSS score (OR, 1.18; P<0001), age (OR, 1.06; P<0.001), prestroke Rankin score (OR, 20.8; P=0.004), and leukoaraiosis (OR, 2.21; P=0.016). Using these factors in multiple logistic regression analysis, the area under the receiver-operator characteristic curve is 0.869. The association between serum glucose and Rankin score at 12 months is described by a J-shaped curve with a nadir of 5 mmol/L. Glucose values between 3.7 and 7.3 mmol/L are associated with favorable outcome. A similar curve was generated for the association of glucose and 24-hour NIHSS score, for which glucose values between 4.0 and 7.2 mmol/L are associated with a NIHSS score <7. Discussion-Both hypoglycemia and hyperglycemia are dangerous in acute ischemic stroke as shown by a J-shaped association between serum glucose and 24-hour and 12-month outcome. Initial serum glucose values between 3.7 and 7.3 mmol/L are associated with favorable outcome.
Resumo:
Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.
Resumo:
BACKGROUND: Sleeve lobectomy is a valid alternative to pneumonectomy for the treatment of centrally located operable non-small cell lung cancer (NSCLC), but concern has been evoked regarding a potentially increased risk of bronchial anastomosis complications after induction therapy. This study examined the impact of induction therapy on airway healing after sleeve lobectomy for NSCLC. METHODS: Bronchial anastomosis complications were recorded with respect to the induction regimen applied (neoadjuvant chemotherapy vs chemoradiotherapy) in a consecutive series of patients with sleeve lobectomy for NSCLC. RESULTS: Ninety-nine patients underwent sleeve resection, 28 of them after induction therapy. Twelve patients received chemotherapy alone, and 16 patients had radiochemotherapy. There were no significant differences in postoperative 90-day mortality (3.6% vs 2.8%) and morbidity (54% vs 49%) for patients with and without induction therapy. Bronchial anastomosis complications occurred in 3 patients (10.8%) with neoadjuvant therapy and in 2 (2.8%) without (p = 0.3). In the induction therapy group, two bronchial stenoses occurred after radiochemotherapy and one bronchopleural fistula after chemotherapy alone. In patients without induction therapy, one bronchial stenosis and one bronchopleural fistula were observed. All bronchial stenoses were successfully treated by dilatation, and both bronchopleural fistulas occurring after right lower lobectomy were successfully treated by reoperation and completion sleeve bilobectomy with preservation of the upper lobe. CONCLUSIONS: Sleeve lobectomy for NSCLC can be safely performed after induction chemotherapy and radiochemotherapy with mortality and incidence of airway complications similar to that observed in nonpretreated patients. The treatment of airway complications does not differ for patients with and without induction therapy.
Resumo:
STUDY DESIGN:: Retrospective database- query to identify all anterior spinal approaches. OBJECTIVES:: To assess all patients with pharyngo-cutaneous fistulas after anterior cervical spine surgery. SUMMARY OF BACKGROUND DATA:: Patients treated in University of Heidelberg Spine Medical Center, Spinal Cord Injury Unit and Department of Otolaryngology (Germany), between 2005 and 2011 with the diagnosis of pharyngo-cutaneous fistulas. METHODS:: We conducted a retrospective study on 5 patients between 2005 and 2011 with PCF after ACSS, their therapy management and outcome according to radiologic data and patient charts. RESULTS:: Upon presentation 4 patients were paraplegic. 2 had PCF arising from one piriform sinus, two patients from the posterior pharyngeal wall and piriform sinus combined and one patient only from the posterior pharyngeal wall. 2 had previous unsuccessful surgical repair elsewhere and 1 had prior radiation therapy. In 3 patients speech and swallowing could be completely restored, 2 patients died. Both were paraplegic. The patients needed an average of 2-3 procedures for complete functional recovery consisting of primary closure with various vascularised regional flaps and refining laser procedures supplemented with negative pressure wound therapy where needed. CONCLUSION:: Based on our experience we are able to provide a treatment algorithm that indicates that chronic as opposed to acute fistulas require a primary surgical closure combined with a vascularised flap that should be accompanied by the immediate application of a negative pressure wound therapy. We also conclude that particularly in paraplegic patients suffering this complication the risk for a fatal outcome is substantial.
Resumo:
AbstractType 2 diabetes (T2D) is a metabolic disease which affects more than 200 millions people worldwide. The progression of this affection reaches nowadays epidemic proportions, owing to the constant augmentation in the frequency of overweight, obesity and sedentary. The pathogenesis of T2D is characterized by reduction in the action of insulin on its target tissues - an alteration referred as insulin resistance - and pancreatic β-cell dysfunction. This latter deterioration is defined by impairment in insulin biosynthesis and secretion, and a loss of β-cell mass by apoptosis. Environmental factors related to T2D, such as chronic elevation in glucose and free fatty acids levels, inflammatory cytokines and pro-atherogenic oxidized low- density lipoproteins (LDL), contribute to the loss of pancreatic β-cell function.In this study, we have demonstrated that the transcription factor Inducible Cyclic AMP Early Repressor (ICER) participates to the progression of both β-cell dysfunction and insulin resistance. The expression of this factor is driven by an alternative promoter and ICER protein represents therefore a truncated product of the Cyclic AMP Response Element Modulator (CREM) family which lacks transactivation domain. Consequently, the transcription factor ICER acts as a passive repressor which reduces expression of genes controlled by the cyclic AMP and Cyclic AMP Response Element Binding protein (CREB) pathway.In insulin-secreting cells, the accumulation of reactive oxygen species caused by environmental factors and notably oxidized LDL - a process known as oxidative stress - induces the transcription factor ICER. This transcriptional repressor hampers the secretory capacity of β-cells by silencing key genes of the exocytotic machinery. In addition, the factor ICER reduces the expression of the scaffold protein Islet Brain 1 (IB 1 ), thereby favouring the activation of the c-Jun N-terminal Kinase (JNK) pathway. This triggering alters in turn insulin biosynthesis and survival capacities of pancreatic β-cells.In the adipose tissue of mice and human subjects suffering from obesity, the transcription factor ICER contributes to the alteration in insulin action. The loss in ICER protein in these tissues induces a constant activation of the CREB pathway and the subsequent expression of the Activating Transcription Factor 3 (ATF3). In turn, this repressor reduces the transcript levels of the glucose transporter GLUT4 and the insulin-sensitizer peptide adiponectin, thereby contributing to the diminution in insulin action.In conclusion, these data shed light on the important role of the transcriptional repressor ICER in the pathogenesis of T2D, which contributes to both alteration in β-cell function and aggravation of insulin resistance. Consequently, a better understanding of the molecular mechanisms responsible for the alterations in ICER levels is required and could lead to develop new therapeutic strategies for the treatment of T2D.RésuméLe diabète de type 2 (DT2) est une maladie métabolique qui affecte plus de 200 millions de personnes dans le monde. La progression de cette affection atteint aujourd'hui des proportions épidémiques imputables à l'augmentation rapide dans les fréquences du surpoids, de l'obésité et de la sédentarité. La pathogenèse du DT2 se caractérise par une diminution de l'action de l'insuline sur ses tissus cibles - un processus nommé insulino-résistance - ainsi qu'une dysfonction des cellules β pancréatiques sécrétrices d'insuline. Cette dernière détérioration se définit par une réduction de la capacité de synthèse et de sécrétion de l'insuline et mène finalement à une perte de la masse de cellules β par apoptose. Des facteurs environnementaux fréquemment associés au DT2, tels l'élévation chronique des taux plasmatiques de glucose et d'acides gras libres, les cytokines pro-inflammatoires et les lipoprotéines de faible densité (LDL) oxydées, contribuent à la perte de fonction des cellules β pancréatiques.Dans cette étude, nous avons démontré que le facteur de transcription « Inducible Cyclic AMP Early Repressor » (ICER) participe à la progression de la dysfonction des cellules β pancréatiques et au développement de Pinsulino-résistance. Son expression étant gouvernée par un promoteur alternatif, la protéine d'ICER représente un produit tronqué de la famille des «Cyclic AMP Response Element Modulator » (CREM), sans domaine de transactivation. Par conséquent, le facteur ICER agit comme un répresseur passif qui réduit l'expression des gènes contrôlés par la voie de l'AMP cyclique et des « Cyclic AMP Response Element Binding protein » (CREB).Dans les cellules sécrétrices d'insuline, l'accumulation de radicaux d'oxygène libres, soutenue par les facteurs environnementaux et notamment les LDL oxydées - un processus appelé stress oxydatif- induit de manière ininterrompue le facteur de transcription ICER. Ainsi activé, ce répresseur transcriptionnel altère la capacité sécrétoire des cellules β en bloquant l'expression de gènes clés de la machinerie d'exocytose. En outre, le facteur ICER favorise l'activation de la cascade de signalisation « c-Jun N- terminal Kinase » (JNK) en réduisant l'expression de la protéine « Islet Brain 1 » (IB1), altérant ainsi les fonctions de biosynthèse de l'insuline et de survie des cellules β pancréatiques.Dans le tissu adipeux des souris et des sujets humains souffrant d'obésité, le facteur de transcription ICER contribue à l'altération de la réponse à l'insuline. La disparition de la protéine ICER dans ces tissus entraîne une activation persistante de la voie de signalisation des CREB et une induction du facteur de transcription « Activating Transcription Factor 3 » (ATF3). A son tour, le répresseur ATF3 inhibe l'expression du transporteur de glucose GLUT4 et du peptide adipocytaire insulino-sensibilisateur adiponectine, contribuant ainsi à la diminution de l'action de l'insuline en conditions d'obésité.En conclusion, à la lumière de ces résultats, le répresseur transcriptionnel ICER apparaît comme un facteur important dans la pathogenèse du DT2, en participant à la perte de fonction des cellules β pancréatiques et à l'aggravation de l'insulino-résistance. Par conséquent, l'étude des mécanismes moléculaires responsables de l'altération des niveaux du facteur ICER pourrait permettre le développement de nouvelles stratégies de traitement du DT2.Résumé didactiqueL'énergie nécessaire au bon fonctionnement de l'organisme est fournie par l'alimentation, notamment sous forme de sucres (glucides). Ceux-ci sont dégradés en glucose, lequel sera distribué aux différents organes par la circulation sanguine. Après un repas, le niveau de glucose sanguin, nommé glycémie, s'élève et favorise la sécrétion d'une hormone appelée insuline par les cellules β du pancréas. L'insuline permet, à son tour, aux organes, tels le foie, les muscles et le tissu adipeux de capter et d'utiliser le glucose ; la glycémie retrouve ainsi son niveau basai.Le diabète de type 2 (DT2) est une maladie métabolique qui affecte plus de 200 millions de personnes dans le monde. Le développement de cette affection est causée par deux processus pathologiques. D'une part, les quantités d'insuline secrétée par les cellules β pancréatiques, ainsi que la survie de ces cellules sont réduites, un phénomène connu sous le nom de dysfonction des cellules β. D'autre part, la sensibilité des tissus à l'insuline se trouve diminuée. Cette dernière altération, l'insulino-résistance, empêche le transport et l'utilisation du glucose par les tissus et mène à une accumulation de ce sucre dans le sang. Cette stagnation de glucose dans le compartiment sanguin est appelée hyperglycémie et favorise l'apparition des complications secondaires du diabète, telles que les maladies cardiovasculaires, l'insuffisance rénale, la cécité et la perte de sensibilité des extrémités.Dans cette étude, nous avons démontré que le facteur ICER qui contrôle spécifiquement l'expression de certains gènes, contribue non seulement à la dysfonction des cellules β, mais aussi au développement de l'insulino-résistance. En effet, dans les cellules β pancréatiques en conditions diabétiques, l'activation du facteur ICER altère la capacité de synthèse et de sécrétion d'insuline et réduit la survie ces cellules.Dans le tissu adipeux des souris et des sujets humains souffrant d'obésité, le facteur ICER contribue à la perte de sensibilité à l'insuline. La disparition d'ICER altère l'expression de la protéine qui capte le glucose, le transoprteur GLUT4, et l'hormone adipocytaire favorisant la sensibilité à l'insuline, nommée adiponectine. Ainsi, la perte d'ICER participe à la réduction de la captation de glucose par le tissue adipeux et au développement de l'insulino-résistance au cours de l'obésité.En conclusion, à la lumière de ces résultats, le facteur ICER apparaît comme un contributeur important à la progression du DT2, en soutenant la dysfonction des cellules β pancréatiques et l'aggravation de l'insulino-résistance. Par conséquent, l'étude des mécanismes responsables de la dérégulation du facteur ICER pourrait permettre le développement de nouvelles stratégies de traitement du DT2.
Resumo:
Three cases are reported of salmonella aortitis observed in three men aged 55, 60 and 48 years, the last of whom had a prosthetic aortic valve and ascending aorta. The microorganisms were S. typhi murium, S. paratyphi B, and S. wien. Despite antibiotic treatment two patients died of perforating aortitis. The third patient developed S. wien gastroenteritis a few days after surgical replacement of the aortic valve and the ascending aorta. Five years later he presented with several bacteremic episodes due to S. wien, which recurred despite several courses of cotrimoxazole treatment. He has now been asymptomatic for over one year under prolonged cotrimoxazole treatment. Since vascular infection may occur following non typhi salmonellosis in 5% of patients over 50, or who have underlying endothelial lesions, the question arises as to whether non typhi S. gastroenteritis should be treated with antibiotics in these high risk patients, in contrast to present recommendations.
Resumo:
AIM: The resting metabolic rate (RMR) varies among pregnant women. The factors responsible for this variability are unknown. This study aimed to assess the influence of the prepregnancy body mass index (BMI) on the RMR during late pregnancy. METHODS: RMR, height, weight, and total (TEE) and activity (AEE) energy expenditures were measured in 46 healthy women aged 31 ± 5 years (mean ± SD) with low (<19.8), normal (19.8-26.0), and high (>26.0) prepregnancy BMI at 38.2 ± 1.5 weeks of gestation (t(gest)) and 40 ± 7 weeks postpartum (t(post)) (n = 27). RESULTS: The mean t(gest) RMR for the low-, normal-, and high-BMI groups was 1,373, 1,807, and 2,191 kcal/day, respectively (p = 0.001). The overall mean t(gest) RMR was 316 ± 183 kcal/day (21%), higher than the overall mean t(post) value and this difference was correlated with gestational weight gain (r = 0.78, p < 0.001). The scaled metabolic rate by allometry (RMR/kilograms⁰·⁷³) was similar in the low-, normal-, and high-BMI groups, respectively (p = 0.45). Changes in t(gest) TEE closely paralleled changes in t(gest) RMR (r = 0.84, p < 0.001). AEE was similar among the BMI groups. CONCLUSION: The RMR is significantly increased in the third trimester of pregnancy. The absolute gestational RMR is higher in women with high prepregnancy BMI due to increased body weight. The scaled metabolic rate (RMR/kilograms⁰·⁷³) is similar among the BMI groups of pregnant women.