905 resultados para Louisiana State University and Agricultural and Mechanical College.
Resumo:
The relationship between the dielectric properties (dielectric constant, ε′, and loss factor, ε; activation energy, E a) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the ε″ peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the ε″ peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E a. The curves of tensile modulus and fracture toughness mechanical properties as a function of OG content presented a similar behavior. ©2006 Sociedade Brasileira de Química.
Resumo:
We investigate, from a philosophical perspective, the relation between abductive reasoning and information in the context of biological systems. Emphasis is given to the organizational role played by abductive reasoning in practical activities of embodied embedded agency that involve meaningful information. From this perspective, meaningful information is provisionally characterized as a selforganizing process of pattern generation that constrains coherent action. We argue that this process can be considered as a part of evolutionarily developed learning abilities of organisms in order to help with their survival. We investigate the case of inorganic mechanical systems (like robots), which deal only with stable forms of habits, rather than with evolving learning abilities. Some difficulties are considered concerning the hypothesis that mechanical systems may operate with meaningful information, present in abductive reasoning. Finally, an example of hypotheses creation in the domain of medical sciences is presented in order to illustrate the complexity of abduction in practical reasoning concerning human activities. © 2007 Springer-Verlag Berlin Heidelberg.
Resumo:
Objectives: The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods: Metallic frameworks (25 mm × 3 mm × 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 μm aluminum oxide at the central area of the frameworks (8 mm × 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 °C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 °C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 °C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (α = 0.05). Results: The mean flexural strength values for the ceramic-gold alloy combination (55 ± 7.2 MPa) were significantly higher than those of the ceramic-Ti cp combination (32 ± 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 ± 6.6 and 53 ± 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 ± 6.8 and 29 ± 6.8 MPa, respectively) compared to the control group (58 ± 7.8 and 39 ± 5.1 MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey's test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance: Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. © 2007 Academy of Dental Materials.
Resumo:
This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.
Resumo:
Includes bibliography
Resumo:
This paper addresses the relationship of copyright and the right of universities on scientific production. Information and Communication Technologies (ICTs) are causing many changes in the system of scientific communication, such as the creation of Institutional Repositories that aim to gather scientific production in digital format. The University needs quicker ways of spreading academic production and many questions are emerging due to contexts such as the Open Access movement. Thus, this paper questions the positioning of Universities, especially Public Universities, which despite having policies related to intellectual property to protect the transferring forms of research results to society; many times do not have a positioning or a mechanism that regulates the self-deposit of scientific production in these Institutional Repositories. In order to develop this paper, the following issues are addressed: lack of interest of the University in storing scientific production; reports on the relationship of the library with scientific publishing houses; the participation of faculty members and students in supporting the Free Access movement; and initiatives aimed at greater flexibility of copyright to the context of scientific production. In order to follow the development of these issues at international level, it was opted for qualitative research with non-participating direct observation to carry out the identification and description of copyright policy of important publishers from the ROMEO SHERPA site; therefore, it can be observed that there are changes regarding the publishers' flexibility before self-archiving of authors in open access institutional repositories in their universities. Given this scenario, we presente reflections and considerations that involve the progress and mainly the integration of the University and its faculty members; the institution should recommend and guide its faculty members not to transfer their copyrights, but to defend their right of copy to Institutional Repositories along with Publishing Houses.
Resumo:
Includes bibliography
Resumo:
Objectives: To evaluate: (1) the in vitro antibacterial, cytotoxic and mechanical properties of a resin-modified glass ionomer cement (RMGIC) containing different concentrations of chlorhexidine (CHX) and (2) the in vivo microbiologic action of the best concentration of CHX associated with the RMGIC applied on remaining dentine after indirect pulp treatment (IPT). Methods: For the in vitro studies, RMGIC was associated with 0.2, 0.5, 1.25 and 2.5% CHX. Microbiologic evaluation consisted of an agar diffusion test on cariogenic bacteria for 24 h. Odontoblast-like cell metabolism and morphology analyses measured the cytotoxic effects of the RMGIC groups after 24 h. The same groups were submitted to compressive and diametral tensile strength. The in vivo treatment consisted of IPT using an RMGIC associated with the best CHX concentration. Clinical and microbiologic evaluations were performed before and after 3 months. Results: The use of 1.25% CHX significantly improved the antibacterial effects of the evaluated RMGIC, without causing any detrimental effects to the odontoblast-like cells and on the mechanical properties. This RMGIC and CHX combination completely eliminated mutans streptococci after 3 months of IPT. Conclusion: The RMGIC and 1.25% CHX mixture showed great biological and mechanical behaviour and could be a good treatment against caries progression. Clinical significance: The association of CHX with a liner RMGIC opens a new perspective for arresting residual caries after IPT. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Aim: To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. Methodology: The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P < 0.05). Results: MTA Fillapex had the shortest setting time and lowest compressive strength values (P < 0.05) compared with the other materials. The ES had flow values similar to the conventional materials, but higher film thickness (P < 0.05) and lower radiopacity (P < 0.05). Similarly to AH Plus, the ES were associated with dimensional expansion (P > 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P < 0.05). None of the endodontic sealers evaluated released formaldehyde after mixing. Conclusion: With the exception of radiopacity, the Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal.
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)