944 resultados para Locality
Resumo:
Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.
Resumo:
Bone is continually being removed and replaced through the actions of basic multicellular units (BMU). This constant upkeep is necessary to remove microdamage formed naturally due to fatigue and thus maintain the integrity of the bone. The repair process in bone is targeted, meaning that a BMU travels directly to the site of damage and repairs it. It is still unclear how targeted remodelling is stimulated and directed but it is highly likely that osteocytes play a role. A number of theories have been advanced to explain the microcrack osteocyte interaction but no complete mechanism has been demonstrated. Osteocytes are connected to each other by dendritic processes. The “scissors model" proposed that the rupture of these processes where they cross microcracks signals the degree of damage and the urgency of the necessary repair. In its original form it was proposed that under applied compressive loading, microcrack faces will be pressed together and undergo relative shear movement. If this movement is greater than the width of an osteocyte process, then the process will be cut in a “scissors like" motion, releasing RANKL, a cytokine known to be essential in the formation of osteoclasts from pre-osteoclasts. The main aim of this thesis was to investigate this theoretical model with a specific focus on microscopy and finite element modelling. Previous studies had proved that cyclic stress was necessary for osteocyte process rupture to occur. This was a divergence from the original “scissors model" which had proposed that the cutting of cell material occurred in one single action. The present thesis is the first study to show fatigue failure in cellular processes spanning naturally occurring cracks and it's the first study to estimate the cyclic strain range and relate it to the number of cycles to failure, for any type of cell. Rupture due to shear movement was ruled out as microcrack closing never occurred, as a result of plastic deformation of the bone. Fatigue failure was found to occur due to cyclic tensile stress in the locality of the damage. The strain range necessary for osteocyte process rupture was quantified. It was found that the lower the process strain range the greater the number of cycles to cell process failure. FEM modelling allowed to predict stress in the vicinity of an osteocyte process and to analyse its interaction with the bone surrounding it: simulations revealed evident creep effects in bone during cyclic loading. This thesis confirms and dismisses aspects of the “scissors model". The observations support the model as a viable mechanism of microcrack detection by the osteocyte network, albeit in a slightly modified form where cyclic loading is necessary and the method of rupture is fatigue failure due to cyclic tensile motion. An in depth study was performed focusing on microscopy analysis of naturally occurring cracks in bone and FEM simulation analysis of an osteocyte process spanning a microcrack in bone under cyclic load.
Resumo:
Self-organising pervasive ecosystems of devices are set to become a major vehicle for delivering infrastructure and end-user services. The inherent complexity of such systems poses new challenges to those who want to dominate it by applying the principles of engineering. The recent growth in number and distribution of devices with decent computational and communicational abilities, that suddenly accelerated with the massive diffusion of smartphones and tablets, is delivering a world with a much higher density of devices in space. Also, communication technologies seem to be focussing on short-range device-to-device (P2P) interactions, with technologies such as Bluetooth and Near-Field Communication gaining greater adoption. Locality and situatedness become key to providing the best possible experience to users, and the classic model of a centralised, enormously powerful server gathering and processing data becomes less and less efficient with device density. Accomplishing complex global tasks without a centralised controller responsible of aggregating data, however, is a challenging task. In particular, there is a local-to-global issue that makes the application of engineering principles challenging at least: designing device-local programs that, through interaction, guarantee a certain global service level. In this thesis, we first analyse the state of the art in coordination systems, then motivate the work by describing the main issues of pre-existing tools and practices and identifying the improvements that would benefit the design of such complex software ecosystems. The contribution can be divided in three main branches. First, we introduce a novel simulation toolchain for pervasive ecosystems, designed for allowing good expressiveness still retaining high performance. Second, we leverage existing coordination models and patterns in order to create new spatial structures. Third, we introduce a novel language, based on the existing ``Field Calculus'' and integrated with the aforementioned toolchain, designed to be usable for practical aggregate programming.
Resumo:
Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.
Resumo:
In questo lavoro di tesi sono state evidenziate alcune problematiche relative alle macchine exascale (sistemi che sviluppano un exaflops di Potenza di calcolo) e all'evoluzione dei software che saranno eseguiti su questi sistemi, prendendo in esame principalmente la necessità del loro sviluppo, in quanto indispensabili per lo studio di problemi scientifici e tecnologici di più grandi dimensioni, con particolare attenzione alla Material Science, che è uno dei campi che ha avuto maggiori sviluppi grazie all'utilizzo di supercomputer, ed ad uno dei codici HPC più utilizzati in questo contesto: Quantum ESPRESSO. Dal punto di vista del software sono state presentate le prime misure di efficienza energetica su architettura ibrida grazie al prototipo di cluster EURORA sul software Quantum ESPRESSO. Queste misure sono le prime ad essere state pubblicate nel contesto software per la Material Science e serviranno come baseline per future ottimizzazioni basate sull'efficienza energetica. Nelle macchine exascale infatti uno dei requisiti per l'accesso sarà la capacità di essere energeticamente efficiente, così come oggi è un requisito la scalabilità del codice. Un altro aspetto molto importante, riguardante le macchine exascale, è la riduzione del numero di comunicazioni che riduce il costo energetico dell'algoritmo parallelo, poiché in questi nuovi sistemi costerà di più, da un punto di vista energetico, spostare i dati che calcolarli. Per tale motivo in questo lavoro sono state esposte una strategia, e la relativa implementazione, per aumentare la località dei dati in uno degli algoritmi più dispendiosi, dal punto di vista computazionale, in Quantum ESPRESSO: Fast Fourier Transform (FFT). Per portare i software attuali su una macchina exascale bisogna iniziare a testare la robustezza di tali software e i loro workflow su test case che stressino al massimo le macchine attualmente a disposizione. In questa tesi per testare il flusso di lavoro di Quantum ESPRESSO e WanT, un software per calcolo di trasporto, è stato caratterizzato un sistema scientificamente rilevante costituito da un cristallo di PDI - FCN2 che viene utilizzato per la costruzione di transistor organici OFET. Infine è stato simulato un dispositivo ideale costituito da due elettrodi in oro con al centro una singola molecola organica.
Resumo:
To be able to interpret patterns of biodiversity it is important to understand the processes by which new species evolve and how closely related species remain reproductively isolated and ecologically differentiated. Divergence and differentiation can vary during speciation and it can be seen in different stages. Groups of closely related taxa constitute important case studies to understand species and new biodiversity formation. However, it is important to assess the divergence among them at different organismal levels and from an integrative perspective. For this purpose, this study used the brown seaweeds genus Fucus as a model to study speciation, as they constitute a good opportunity to study divergence at different stages. We investigated the divergence patterns in Fucus species from two marginal areas (northern Baltic Sea and the Tjongspollen area), based on phenetic, phylogenetic and biological taxonomical criteria that are respectively characterised by algal morphology, allele frequencies of five microsatellite loci and levels of secondary polyphenolic compounds called phlorotannins. The results from this study showed divergence at morphological and genetic levels to certain extent but complete lack of divergence at biochemical level (i.e. constitutive phlorotannin production) in the Baltic Sea or Norway. Morphological divergence was clearly evident in Tjongspollen (Norway) among putative taxa as they were identified in the field and this divergence corresponds with their neutral genetic divergence. In the Baltic, there are some distinguishable patterns in the morphology of the swedish and finnish individuals according to locality to certain extent but not among putative taxa within localities. Likewise, these morphological patterns have genetic correspondence among localities but not within each locality. At the biochemical level, measured by the phlorotannin contents there were neither evidence of divergence in Norway or the Baltic Sea nor any discernable aggregation pattern among or within localities. Our study have contributed with further understanding of the Baltic Sea Fucus system and its intriguingly rapid and recent divergence as well as of the Tjongspollen area systems where formally undescribed individuals have been observed for the first time; in fact they appear largely differentiated and they may well warrant a new species status. In current times, climate change threatens, peripheral ecosystems, biodiversity, and increased knowledge of processes generating and maintaining biodiversity in those ecosystems seem particularly important and needed.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.
Resumo:
Detrital zircon and metamorphic monazite ages from the Picuris Mountains, north central New Mexico, were used to confirm the depositional age of the Marquenas Formation, to document the depositional age of the Vadito Group, and to constrain the timing of metamorphism and deformation in the region. Detrital zircon 207Pb/206Pb ages were obtained with the LA-MC-ICPMS from quartzites collected from the type locality of the Marquenas Formation exposed at Cerro de las Marquenas, and from the lower Vadito Group in the southern and eastern Picuris Mountains. The Marquenas Formation sample yields 113 concordant ages including a Mesoproterozoic age population with four grains ca. 1470 Ga, a broad Paleoproterozoic age peak at 1695 Ma, and minor Archean age populations. Data confirm recent findings of Mesoproterozoic detrital zircons reported by Jones et al. (2011), and show that the Marquenas Formation is the youngest lithostratigraphic unit in the Picuris Mountains. Paleoproterozoic and Archean detrital grains in the Marquenas Formation are likely derived from local recycled Vadito Group rocks and ca. 1.75 Ga plutonic complexes, and ca. 1.46 detrital zircons were most likely derived from exposed Mesoproterozoic plutons south of the Picuris. Ninety-five concordant grains from each of two Vadito Group quartzites yield relatively identical unimodal Paleoproterozoic age distributions, with peaks at 1713-1707 Ma. Eastern exposures of quartzite mapped as Marquenas Formation yield detrital zircon age patterns and metamorphic mineral assemblages that are nearly identical to the Vadito Group. On this basis, I tentatively assigned the easternmost quartzite to the Vadito Group. Zircon grains in all samples show low U/Th ratios, welldeveloped concentric zoning, and no evidence of metamorphic overgrowth events, consistent with an igneous origin. North-directed paleocurrent indicators, such as tangential crossbeds (Soegaard & Eriksson, 1986) and other primary sedimentary structures, are preserved in the Marquenas Formation quartzite. Together with pebble-toboulder metaconglomerates in the Marquenas, these observations suggest that this formation was deposited in a braided alluvial plain environment in response to syntectonic uplift to the south of the Picuris Mountains. Metamorphic monazite from two Vadito Group quartzite samples were analyzed with an electron microprobe (EMP). Elemental compositional variation with respect to Th and Y define core and rim domains in monazite grains, and show lower concentrations of Th (1.46-1.52 wt%) and Y (0.67 wt%) in the cores, and higher concentrations of Th (1.98 wt%) and Y (1.06 wt%) in the rims. Results show that Mesoproterozoic core and rim ages from five grains overlap within uncertainty, ranging from 1395-1469 Ma with an average age of 1444 Ma. This 1.44 Ga average age is the dominant timing of metamorphic monazite growth in the region, and represents the timing of metamorphism experienced by the region. An older 1630 Ma core observed in sample CD10-12 may be interpreted as a result of low temperature metamorphism in lower Vadito Group rocks due to heat from ca. 1.65 Ga granitic intrusions. Core ages ca. 1.5 Ga are likely due to a mixing age of two different age domains during analyses. Confirmed sedimentation at 1.48-1.45 Ga and documented mid-crustal regional metamorphism in northern New Mexico ca. 1.44-1.40 are likely associated with a Mesoproterozoic orogenic event.
Resumo:
Following an extensive survey of sources on urban development and comparative analyses of Bratislava and other major Central European cities and Slovak regional centres, Divinsky completed a detailed study of Bratislava's spatial structure using the most recent approaches of the so-called Belgian school. He also produced an intraurban regionalisation of Bratislava as a multi-structural interactive model, mapped and characterised by the cardinal parameters, processes, trends and inequalities of population and housing in each spatial element of the model. The field survey entailed a seven-month physical investigation of the territory using a "street by street, block by block, house by house and locality by locality" system to ensure that no areas were missed. A second field survey was carried out two years later to check on transformations. An important feature of the research was the concept of the morphological city, which was defined as "a continuously built-up area of all urban functions (i.e. excluding agricultural lands and forests lying outside the city which serve for half-day recreation) made up of spatial-structural units fulfilling certain criteria". The most important criteria was a minimum population density per unit of no less than 650 persons per square kilometre, except in the case of units totally surrounded by units of higher densities, where it could be lower. The morphological city as defined here includes only 36% of the territory of the administrative city, but 95% of the popula tion, giving a much higher population density which better reflects the urban reality of Bratislava.
Resumo:
Through studying German, Polish and Czech publications on Silesia, Mr. Kamusella found that most of them, instead of trying to objectively analyse the past, are devoted to proving some essential "Germanness", "Polishness" or "Czechness" of this region. He believes that the terminology and thought-patterns of nationalist ideology are so deeply entrenched in the minds of researchers that they do not consider themselves nationalist. However, he notes that, due to the spread of the results of the latest studies on ethnicity/nationalism (by Gellner, Hobsbawm, Smith, Erikson Buillig, amongst others), German publications on Silesia have become quite objective since the 1980s, and the same process (impeded by under funding) has been taking place in Poland and the Czech Republic since 1989. His own research totals some 500 pages, in English, presented on disc. So what are the traps into which historians have been inclined to fall? There is a tendency for them to treat Silesia as an entity which has existed forever, though Mr. Kamusella points out that it emerged as a region only at the beginning of the 11th century. These same historians speak of Poles, Czechs and Germans in Silesia, though Mr. Kamusella found that before the mid-19th century, identification was with an inhabitant's local area, religion or dynasty. In fact, a German national identity started to be forged in Prussian Silesia only during the Liberation War against Napoleon (1813-1815). It was concretised in 1861 in the form of the first Prussian census, when the language a citizen spoke was equated with his/her nationality. A similar census was carried out in Austrian Silesia only in 1881. The censuses forced the Silesians to choose their nationality despite their multiethnic multicultural identities. It was the active promotion of a German identity in Prussian Silesia, and Vienna's uneasy acceptance of the national identities in Austrian Silesia which stimulated the development of Polish national, Moravian ethnic and Upper Silesian ethnic regional identities in Upper Silesia, and Polish national, Czech national, Moravian ethnic and Silesian ethnic identities in Austrian Silesia. While traditional historians speak of the "nationalist struggle" as though it were a permanent characteristic of Silesia, Mr. Kamusella points out that such a struggle only developed in earnest after 1918. What is more, he shows how it has been conveniently forgotten that, besides the national players, there were also significant ethnic movements of Moravians, Upper Silesians, Silesians and the tutejsi (i.e. those who still chose to identify with their locality). At this point Mr. Kamusella moves into the area of linguistics. While traditionally historians have spoken of the conflicts between the three national languages (German, Polish and Czech), Mr Kamusella reminds us that the standardised forms of these languages, which we choose to dub "national", were developed only in the mid-18th century, after 1869 (when Polish became the official language in Galicia), and after the 1870s (when Czech became the official language in Bohemia). As for standard German, it was only widely promoted in Silesia from the mid 19th century onwards. In fact, the majority of the population of Prussian Upper Silesia and Austrian Silesia were bi- or even multilingual. What is more, the "Polish" and "Czech" Silesians spoke were not the standard languages we know today, but a continuum of West-Slavic dialects in the countryside and a continuum of West-Slavic/German creoles in the urbanised areas. Such was the linguistic confusion that, from time to time, some ethnic/regional and Church activists strove to create a distinctive Upper Silesian/Silesian language on the basis of these dialects/creoles, but their efforts were thwarted by the staunch promotion of standard German, and after 1918, of standard Polish and Czech. Still on the subject of language, Mr. Kamusella draws attention to a problem around the issue of place names and personal names. Polish historians use current Polish versions of the Silesian place names, Czechs use current Polish/Czech versions of the place names, and Germans use the German versions which were in use in Silesia up to 1945. Mr. Kamusella attempted to avoid this, as he sees it, nationalist tendency, by using an appropriate version of a place name for a given period and providing its modern counterpart in parentheses. In the case of modern place names he gives the German version in parentheses. As for the name of historical figures, he strove to use the name entered on the birth certificate of the person involved, and by doing so avoid such confusion as, for instance, surrounds the Austrian Silesian pastor L.J. Sherschnik, who in German became Scherschnick, in Polish, Szersznik, and in Czech, Sersnik. Indeed, the prospective Silesian scholar should, Mr. Kamusella suggests, as well as the three languages directly involved in the area itself, know English and French, since many documents and books on the subject have been published in these languages, and even Latin, when dealing in depth with the period before the mid-19th century. Mr. Kamusella divides the policies of ethnic cleansing into two categories. The first he classifies as soft, meaning that policy is confined to the educational system, army, civil service and the church, and the aim is that everyone learn the language of the dominant group. The second is the group of hard policies, which amount to what is popularly labelled as ethnic cleansing. This category of policy aims at the total assimilation and/or physical liquidation of the non-dominant groups non-congruent with the ideal of homogeneity of a given nation-state. Mr. Kamusella found that soft policies were consciously and systematically employed by Prussia/Germany in Prussian Silesia from the 1860s to 1918, whereas in Austrian Silesia, Vienna quite inconsistently dabbled in them from the 1880s to 1917. In the inter-war period, the emergence of the nation-states of Poland and Czechoslovakia led to full employment of the soft policies and partial employment of the hard ones (curbed by the League of Nations minorities protection system) in Czechoslovakian Silesia, German Upper Silesia and the Polish parts of Upper and Austrian Silesia. In 1939-1945, Berlin started consistently using all the "hard" methods to homogenise Polish and Czechoslovakian Silesia which fell, in their entirety, within the Reich's borders. After World War II Czechoslovakia regained its prewar part of Silesia while Poland was given its prewar section plus almost the whole of the prewar German province. Subsequently, with the active involvement and support of the Soviet Union, Warsaw and Prague expelled the majority of Germans from Silesia in 1945-1948 (there were also instances of the Poles expelling Upper Silesian Czechs/Moravians, and of the Czechs expelling Czech Silesian Poles/pro-Polish Silesians). During the period of communist rule, the same two countries carried out a thorough Polonisation and Czechisation of Silesia, submerging this region into a new, non-historically based administrative division. Democratisation in the wake of the fall of communism, and a gradual retreat from the nationalist ideal of the homogeneous nation-state with a view to possible membership of the European Union, caused the abolition of the "hard" policies and phasing out of the "soft" ones. Consequently, limited revivals of various ethnic/national minorities have been observed in Czech and Polish Silesia, whereas Silesian regionalism has become popular in the westernmost part of Silesia which remained part of Germany. Mr. Kamusella believes it is possible that, with the overcoming of the nation-state discourse in European politics, when the expression of multiethnicity and multilingualism has become the cause of the day in Silesia, regionalism will hold sway in this region, uniting its ethnically/nationally variegated population in accordance with the principle of subsidiarity championed by the European Union.
Resumo:
Successful software systems cope with complexity by organizing classes into packages. However, a particular organization may be neither straightforward nor obvious for a given developer. As a consequence, classes can be misplaced, leading to duplicated code and ripple effects with minor changes effecting multiple packages. We claim that contextual information is the key to rearchitecture a system. Exploiting contextual information, we propose a technique to detect misplaced classes by analyzing how client packages access the classes of a given provider package. We define locality as a measure of the degree to which classes reused by common clients appear in the same package. We then use locality to guide a simulated annealing algorithm to obtain optimal placements of classes in packages. The result is the identification of classes that are candidates for relocation. We apply the technique to three applications and validate the usefulness of our approach via developer interviews.
Resumo:
OBJECTIVE: To describe a new disaggregate surveillance system covering key diagnosed sexually transmitted infections in a UK locality. METHODS: The Avon System for Surveillance of Sexually Transmitted Infections (ASSIST) collects computerised person- and episode-based information about laboratory-diagnosed sexually transmitted infections from genitourinary medicine (GUM) clinics, the Avon Brook Clinic, and the Health Protection Agency and trust laboratories in primary care trusts in Avon. The features of the system are illustrated here, by describing chlamydia-testing patterns according to the source of test, age and sex, and by mapping the distribution of chlamydia across Bristol, UK. RESULTS: Between 2000 and 2004, there were 821,685 records of tests for sexually transmitted infections, with 23,542 positive results. The proportion of tests and positive results for chlamydia and gonorrhoea sent from general practice increased over time. Most chlamydia tests in both GUM and non-specialist settings were performed on women aged >25 years, but positivity rates were highest in women aged <25 years. The positivity rate remained stable between 2000 and 2004. Including data from all diagnostic settings, chlamydia rates were about twice as high as those estimated only from genitourinary clinic cases. CONCLUSIONS: The ASSIST model could be a promising new tool for planning and measuring sexual health services in England if it can become sustainable and provide more timely data using fewer resources. Collecting denominator data and including infections diagnosed in primary care are essential for meaningful surveillance.
Resumo:
As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks.
Resumo:
High horizontal stresses can cause numerous ground control problems in mines and other underground structures ultimately impacting worker safety, productivity and the economics of an underground operation. Mine layout and design can be optimized when the presence and orientation of these stresses are recognized and their impact minimized. A simple technique for correlating the principal horizontal stress direction in a sedimentary rock mass with the preferential orientation of moisture induced expansion in a sample of the same rock was introduced in the 1970s and has since gone un-reported and unused. This procedure was reexamined at a locality near the original test site at White Pine, Michigan in order to validate the original research and to consider its usefulness in mining and civil engineering applications in high horizontal stress conditions. This procedure may also be useful as an economical means for characterizing regional stress fields.