955 resultados para Linear erosion processes
Resumo:
The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.
Resumo:
Semi-conducting phase I CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), which is of considerable interest as a switching device for memory storage materials, can be electrocrystallized from CH3CN via two distinctly different pathways when TCNQ is reduced to TCNQ˙− in the presence of [Cu(MeCN)4]+. The first pathway, identified in earlier studies, occurs at potentials where TCNQ is reduced to TCNQ˙− and involves a nucleation–growth mechanism at preferred sites on the electrode to produce arrays of well separated large branched needle-shaped phase I CuTCNQ crystals. The second pathway, now identified at more negative potentials, generates much smaller needle-shaped phase I CuTCNQ crystals. These electrocrystallize on parts of the surface not occupied in the initial process and give rise to film-like characteristics. This process is attributed to the reduction of Cu+[(TCNQ˙−)(TCNQ)] or a stabilised film of TCNQ via a solid–solid conversion process, which also involves ingress of Cu+via a nucleation–growth mechanism. The CuTCNQ surface area coverage is extensive since it occurs at all areas of the electrode and not just at defect sites that dominate the crystal formation sites for the first pathway. Infrared spectra, X-ray diffraction, surface plasmon resonance, quartz crystal microbalance, scanning electron microscopy and optical image data all confirm that two distinctly different pathways are available to produce the kinetically-favoured and more highly conducting phase I CuTCNQ solid, rather than the phase II material.
Resumo:
Electrochemical processes in mesoporous TiO2-Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR-drop, RC-time constant phenomena, and by potential and pH-dependent conductivity. In this study, large-amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic-based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2-Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one-electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference-free pH sensing with systems like that found for ferrocene derivatives.
Resumo:
Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.
Resumo:
The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.
Resumo:
This research explores the relationship between international entrepreneurship characteristics and the use of Internet capabilities for the international business processes of the firm. It has been suggested, that the accumulation of a firms Internet capability can assist international operations, especially when operating in fast changing dynamic Internet environments. However, international entrepreneurship characteristics which are seen as a precursor to leveraging Internet capabilities are still vague. Given this finding, eight case studies of small and medium sized travel and tourism firms were selected to investigate the influence of international entrepreneurship characteristics, and Internet capabilities for international business processes. Based on the eight in-depth case studies, the results signify that successful international entrepreneurial firms which encompass high levels of international innovativeness and proactiveness behaviour integrate Internet capabilities to a greater degree. Our findings also indicate that the prior international business experience, international risk-taking propensity and international networking characteristics are not necessarily precursors to successful integration of Internet capabilities for international business processes. On the contrary, international business experience and international networks actually lead to a reliance on traditional mechanisms of internationalisation and can dilute the development of Internet capabilities for international business processes.
Resumo:
Earthwork planning has been considered in this article and a generic block partitioning and modelling approach has been devised to provide strategic plans of various levels of detail. Conceptually this approach is more accurate and comprehensive than others, for instance those that are section based. In response to environmental concerns the metric for decision making was fuel consumption and emissions. Haulage distance and gradient are also included as they are important components of these metrics. Advantageously the fuel consumption metric is generic and captures the physical difficulties of travelling over inclines of different gradients, that is consistent across all hauling vehicles. For validation, the proposed models and techniques have been applied to a real world road project. The numerical investigations have demonstrated that the models can be solved with relatively little CPU time. The proposed block models also result in solutions of superior quality, i.e. they have reduced fuel consumption and cost. Furthermore the plans differ considerably from those based solely upon a distance based metric thus demonstrating a need for industry to reflect upon their current practices.
Resumo:
Stream ciphers are symmetric key cryptosystems that are used commonly to provide confidentiality for a wide range of applications; such as mobile phone, pay TV and Internet data transmissions. This research examines the features and properties of the initialisation processes of existing stream ciphers to identify flaws and weaknesses, then presents recommendations to improve the security of future cipher designs. This research investigates well-known stream ciphers: A5/1, Sfinks and the Common Scrambling Algorithm Stream Cipher (CSA-SC). This research focused on the security of the initialisation process. The recommendations given are based on both the results in the literature and the work in this thesis.
Resumo:
Business process analysis and process mining, particularly within the health care domain, remain under-utilised. Applied research that employs such techniques to routinely collected, health care data enables stakeholders to empirically investigate care as it is delivered by different health providers. However, cross-organisational mining and the comparative analysis of processes present a set of unique challenges in terms of ensuring population and activity comparability, visualising the mined models and interpreting the results. Without addressing these issues, health providers will find it difficult to use process mining insights, and the potential benefits of evidence-based process improvement within health will remain unrealised. In this paper, we present a brief introduction on the nature of health care processes; a review of the process mining in health literature; and a case study conducted to explore and learn how health care data, and cross-organisational comparisons with process mining techniques may be approached. The case study applies process mining techniques to administrative and clinical data for patients who present with chest pain symptoms at one of four public hospitals in South Australia. We demonstrate an approach that provides detailed insights into clinical (quality of patient health) and fiscal (hospital budget) pressures in health care practice. We conclude by discussing the key lessons learned from our experience in conducting business process analysis and process mining based on the data from four different hospitals.
Resumo:
Pretreatments of sugarcane bagasse by three high boiling-point polyol solutions were compared in acid-catalysed processes. Pretreatments by ethylene glycol (EG) and propylene glycol solutions containing 1.2 % H2SO4 and 10 % water at 130 °C for 30 min removed 89 % lignin from bagasse resulting in a glucan digestibility of 95 % with a cellulase loading of ~20 FPU/g glucan. Pretreatment by glycerol solution under the same conditions removed 57 % lignin with a glucan digestibility of 77 %. Further investigations with EG solutions showed that increases in acid content, pretreatment temperature and time, and decrease in water content improved pretreatment effectiveness. A good linear correlation of glucan digestibility with delignification was observed with R2 = 0.984. Bagasse samples pretreated with EG solutions were characterised by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction, which confirmed that improved glucan enzymatic digestibility is mainly due to delignification and defibrillation of bagasse. Pretreatment by acidified EG solutions likely led to the formation of EG-glycosides. Up to 36 % of the total lignin was recovered from pretreatment hydrolysate, which may improve the pretreatment efficiency of recycled EG solution.
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
This thesis is a work-in-progress that articulates my research journey based on the development of a curriculum innovation in environmental education. This journey had two distinct, but intertwined phases: action research based fieldwork, conducted collaboratively, to create a whole school approach to environmental education curriculum planning; and a phase of analysis and reflection based on the emerging findings, as I sought to create personal "living educational theory" about change and innovation. A key stimulus for the study was the perceived theory-practice gap in environmental education, which is often presented in the literature as a criticism of teachers for failing to achieve the values and action objectives of critical environmental education. Hence, many programs and projects are considered to be superficial and inconsequential in terms of their ability to seriously address environmental issues. The intention of this study was to work with teachers in a project that would be an exemplar of critical environmental education. This would be in the form of a whole school "learnscaping" curriculum in a primary school whereby the schoolgrounds would be utilised for interdisciplinary critical environment education. Parallel with the three cycles of action research in this project, my research objectives were to identify and comment upon the factors that influence the generation of successful educational innovation. It was anticipated that the project would be a collaboration involving me, as researcher-facilitator, and many of the teachers in the school as active participants. As the project proceeded through its action cycles, however, it became obvious that the goal of developing a critical environmental education curriculum, and the use of highly participatory processes, were unrealistic. Institutional and organisational rigidities in education generally, teachers' day-to-day work demands, and the constant juggle of work, family and other responsibilities for all participants acted as significant constraints. Consequently, it became apparent that the learnscaping curriculum would not be the hoped-for exemplar. Progress was slow and, at times, the project was in danger of stalling permanently. While the curriculum had some elements of critical environmental education, these were minor and not well spread throughout the school. Overall, the outcome seemed best described as a "small win"; perhaps just another example of the theory-practice gap that I had hoped this project would bridge. Towards the project's end, however, my continuing reflection led to an exploration of chaos/complexity theory which gave new meaning to the concept of a "small win". According to this theory, change is not the product of linear processes applied methodically in purposeful and diligent ways, but emerges from serendipitous events that cannot be planned for, or forecast in advance. When this perspective of change is applied to human organisations - in this study, a busy school - the context for change is recognised not as a stable, predictable environment, but as a highly complex system where change happens all the time, cannot be controlled, and no one can be really sure where the impacts might lead. This so-called "butterfly effect" is a central idea of this theory where small changes or modifications are created - the effects of which are difficult to know, let alone determine - and which can have large-scale impacts. Allied with this effect is the belief that long term developments in an organisation that takes complexity into account, emerge by spontaneous self-organising evolution, requiring political interaction and learning in groups, rather than systematic progress towards predetermined goals or "visions". Hence, because change itself and the contexts of change are recognised as complex, chaos/complexity theory suggests that change is more likely to be slow and evolutionary - cultural change - rather than fast and revolutionary where the old is quickly ushered out by radical reforms and replaced by new structures and processes. Slow, small-scale changes are "normal", from a complexity viewpoint, while rapid, wholesale change is both unlikely and unrealistic. Therefore, the frustratingly slow, small-scale, imperfect educational changes that teachers create - including environmental education initiatives - should be seen for what they really are. They should be recognised as successful changes, the impacts of which cannot be known, but which have the potential to magnify into large-scale changes into the future. Rather than being regarded as failures for not meeting critical education criteria, "small wins" should be cause for celebration and support. The intertwined phases of collaborative action research and individual researcher reflection are mirrored in the thesis structure. The first three chapters, respectively, provide the thesis overview, the literature underpinning the study's central concern, and the research methodology. Chapters 4, 5, and 6 report on each of the three action research cycles of the study, namely Laying the Groundwork, Down to Work!, and The Never-ending Story. Each of these chapters presents a narrative of events, a literature review specific to developments in the cycle, and analysis and critique of the events, processes and outcomes of each cycle. Chapter 7 provides a synthesis of the whole of the study, outlining my interim propositions about facilitating curriculum change in schools through action research, and the implications of these for environmental education.
Resumo:
In nature, the interactions between agents in a complex system (fish schools; colonies of ants) are governed by information that is locally created. Each agent self-organizes (adjusts) its behaviour, not through a central command centre, but based on variables that emerge from the interactions with other system agents in the neighbourhood. Self-organization has been proposed as a mechanism to explain the tendencies for individual performers to interact with each other in field-invasion sports teams, displaying functional co-adaptive behaviours, without the need for central control. The relevance of self-organization as a mechanism that explains pattern-forming dynamics within attacker-defender interactions in field-invasion sports has been sustained in the literature. Nonetheless, other levels of interpersonal coordination, such as intra-team interactions, still raise important questions, particularly with reference to the role of leadership or match strategies that have been prescribed in advance by a coach. The existence of key properties of complex systems, such as system degeneracy, nonlinearity or contextual dependency, suggests that self-organization is a functional mechanism to explain the emergence of interpersonal coordination tendencies within intra-team interactions. In this opinion article we propose how leadership may act as a key constraint on the emergent, self-organizational tendencies of performers in field-invasion sports.
Resumo:
This study investigated changes in the complexity (magnitude and structure of variability) of the collective behaviours of association football teams during competitive performance. Raw positional data from an entire competitive match between two professional teams were obtained with the ProZone® tracking system. Five compound positional variables were used to investigate the collective patterns of performance of each team including: surface area, stretch index, team length, team width, and geometrical centre. Analyses involve the coefficient of variation (%CV) and approximate entropy (ApEn), as well as the linear association between both parameters. Collective measures successfully captured the idiosyncratic behaviours of each team and their variations across the six time periods of the match. Key events such as goals scored and game breaks (such as half time and full time) seemed to influence the collective patterns of performance. While ApEn values significantly decreased during each half, the %CV increased. Teams seem to become more regular and predictable, but with increased magnitudes of variation in their organisational shape over the natural course of a match.