942 resultados para Leader-follower Interplay
Resumo:
In this thesis, we studied the cross-talk between malignant cells and stromal cells, with the aim to elucidate the respective contribution to myeloid neoplasm onset and progression. First, we characterized and compared mesenchymal stromal cells (MSCs) isolated from myelodysplastic syndrome (MDS-MSCs) and acute myeloid leukemia (AML-MSCs) patients. We demonstrated that, despite some unaltered functions, patient-derived MSCs show also intrinsic, distinct functional abnormalities, which could all potentially favor a leukemia-protective bone marrow (BM) niche in vivo. Second, we investigated the ability of AML cells to modulate the AML-MSC functions. In a GEP-screening, we found that 40% of BM-derived AML samples show a higher IFN-γ expression, compared to the mean IFN-γ expression in healthy BM-derived cells. We demonstrated that in co-culture experiments, IFN-γ+ AML cells modify AML-MSC gene expression and function, inducing the up-regulation of IDO1, and consequently the generation of T regulatory cells. Finally, we wondered if the transcriptome of stromal cells could be influenced by the hematopoietic-specific alterations, i.e. Dnmt3a and Asxl1 mutations, which occur early in MDS/AML patients. We found that Dnmt3a- and Asxl1-null BM cells, when transplanted in wild-type mice, induce profound and deletion-specific modifications in the transcriptome of wild-type BM stromal cells, suggesting the ability of Dnmt3a- and Asxl1-null BM cells to shape the niche. Furthermore, we compared the transcriptome of wild-type BM stromal cells, obtained from transplantation experiments, with that of MSCs isolated from low-risk MDS patients with DNMT3A and ASXL1 mutations, and we highlighted some common modifications, which could be potentially relevant for human disease and specific for DNMT3A/ASXL1 mutations. In conclusion, this thesis pointed out that there is a bi-directional cross-talk, in which stromal cells can influence malignant cells, and in turn malignant/pre-malignant cells can alter stromal cell gene expression and function. Both mechanisms could potentially contribute to the pathogenesis of myeloid malignancies.
Resumo:
The Myanmar “period of transition” (2011-2021) has often been described as a puzzle. Various scholars have begun to engage with the Myanmar context in an effort to grasp the essence of the transition it underwent during President Thein Sein’s USPD and Aung San Suu Kyi’s NLD governments. My work focuses on a specific policy sector, higher education, with a view to contributing to this scholarly debate regarding what was actually happening inside this complex country “transition”, especially in terms of collective participation in the process of political and social change. Reviewing existing scholarly literature on the politics of higher education, my study employs a triangle of analysis in which higher education reform is framed as the interplay of action on the part of “state authority”, “student politics” and “international actors”. What does this interplay lens reveal if we consider Myanmar’s “period of transition”? I argue that it shows the ambiguity and contradiction of tangible pushes for progressive social change that coexisted with authoritarian currents and the reinforcement of the societal position of dominant elites. At the policy level, ultimately, a convergence of interests between international actors and state authority served as the force driving the new higher education reform towards a neo-liberal model of governance and autonomy. This work unpacks the higher education reform process thanks to qualitative data gathered through extensive participant observation, in-depth interviewing and critical discourse analysis, shedding light on the rich narratives of those involved in the politics of higher education in Myanmar.
Resumo:
The enhanced production of strange hadrons in heavy-ion collisions relative to that in minimum-bias pp collisions is historically considered one of the first signatures of the formation of a deconfined quark-gluon plasma. At the LHC, the ALICE experiment observed that the ratio of strange to non-strange hadron yields increases with the charged-particle multiplicity at midrapidity, starting from pp collisions and evolving smoothly across interaction systems and energies, ultimately reaching Pb-Pb collisions. The understanding of the origin of this effect in small systems remains an open question. This thesis presents a comprehensive study of the production of $K^{0}_{S}$, $\Lambda$ ($\bar{\Lambda}$) and $\Xi^{-}$ ($\bar{\Xi}^{+}$) strange hadrons in pp collisions at $\sqrt{s}$ = 13 TeV collected in LHC Run 2 with ALICE. A novel approach is exploited, introducing, for the first time, the concept of effective energy in the study of strangeness production in hadronic collisions at the LHC. In this work, the ALICE Zero Degree Calorimeters are used to measure the energy carried by forward emitted baryons in pp collisions, which reduces the effective energy available for particle production with respect to the nominal centre-of-mass energy. The results presented in this thesis provide new insights into the interplay, for strangeness production, between the initial stages of the collision and the produced final hadronic state. Finally, the first Run 3 results on the production of $\Omega^{\pm}$ ($\bar{\Omega}^{+}$) multi-strange baryons are presented, measured in pp collisions at $\sqrt{s}$ = 13.6 TeV and 900 GeV, the highest and lowest collision energies reached so far at the LHC. This thesis also presents the development and validation of the ALICE Time-Of-Flight (TOF) data quality monitoring system for LHC Run 3. This work was fundamental to assess the performance of the TOF detector during the commissioning phase, in the Long Shutdown 2, and during the data taking period.
Resumo:
La tesi è basata sul dimensionamento e l’analisi degli articoli che possono andare all’interno di un nuovo magazzino. Il progetto nasce dalla necessità di espandere il centro di stoccaggio attuale. Verranno costruiti un magazzino Autostore, una struttura più compatta ed efficiente nello stoccaggio della merce, ed un nuovo magazzino pallet servito da traslo elevatori. Dato che i materiali all’interno dell’Autostore devono essere stoccati all’interno di cassette più piccole rispetto ad un pallet, è stato necessario stimare il numero di articoli idonei a questo tipo di stoccaggio sia dal punto di vista del peso che dal punto di vista volumetrico, dato che di solo un 30% dei codici si è a conoscenza delle dimensioni. L’analisi si è sviluppata tramite stime in base a quanti codici siano presenti all’interno dei pallet e la loro quantità al suo interno. Da questa stima si sono ricavate tre categorie, verde, arancione e rossa che identificano se i materiali risultano idonei oppure no. I primi sono quelli che possono andare all’interno dell’Autostore, i secondi risultano essere border line, mentre i terzi non possono andare all’interno sicuramente. Degli articoli in esame sono state estratte anche le giacenze medie nei 3 anni passati, in modo tale da dimensionare adeguatamente i magazzini, le entrate merci, così da vedere quante baie di carico sono necessarie e le varie tipologie di movimento legate ai prelievi e le tempistiche di prelievo per ogni baia di scarico, in modo tale da valutare le minime prestazioni che il nuovo magazzino deve soddisfare. Sono stati calcolati anche dei flussi di materiale, uscente ed entrante dall’azienda, in modo tale da individuare la posizione ottimale del nuovo centro di stoccaggio. Infine sono state dimensionate e costificate le due soluzioni: quella Autostore che può ospitare tutti gli articoli della categoria verde, di cui sono stati sviluppati due scenari, mentre quella del magazzino automatico pallet che contiene le altre due categorie.
Resumo:
Il presente elaborato di tesi riguarda uno studio che è stato portato avanti durante il tirocinio curriculare svolto nell’ufficio Engineering di Marchesini Group S.p.A., azienda leader nella produzione di macchine automatiche per il packaging di prodotti farmaceutici e cosmetici. Dopo aver riscontrato alcune criticità nelle modalità con le quali vengono attualmente pianificate e gestite le risorse appartenenti ai team produttivi e con le quali vengono valutati i carichi di lavoro, si sono elaborati dei modelli e degli strumenti che permettono di migliorare ed ottimizzare l’assegnazione delle risorse ai gruppi e di visualizzare in tempo reale la distribuzione dell’impegno di lavoro dei reparti in relazione alla disponibilità in produzione. Le proposte supportano il trend dell’attuale contesto produttivo di garantire un elevato livello di servizio al cliente rispettandone le richieste e i tempi stabiliti. Difatti, un’assegnazione corretta delle risorse in produzione consente di ridurre i ritardi e le inefficienze e, di conseguenza, di migliorare i lead time. In aggiunta, una correlazione chiara e strutturata fra le risorse e gli obiettivi raggiungibili permette di conseguire con maggiore sicurezza i risultati economici stabiliti, evitando di perdere parte del valore potenzialmente collaudabile.
Resumo:
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5' spliced leader (SL) cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Resumo:
Context: Bariatric surgery often results in remission of the diabetic state in obese patients. Increased incretin effect seems to play an important role in the glycemic improvements after Roux-en-Y gastric bypass, but the impact of biliopancreatic diversion (BPD) remains unexplored. Objective: To elucidate the effect of BPD on the incretin effect and its interplay with beta-cell function and insulin sensitivity (IS) in obese subjects with type 2 diabetes (T2DM). Design, Setting and Patients: Twenty-three women were studied: a control group of 13 lean, normal glucose-tolerant women (lean NGT) studied once and 10 obese patients with T2DM studied before, 1 and 12 months after BPD. Intervention: The ObeseT2DM group underwent BPD. Main Outcome Measures: The change in incretin effect as measured by the isoglycemic intravenous glucose infusion test. Secondary outcomes encompassed IS and beta-cell function. Results: At baseline, the incretin effect was lower in obese T2DM compared to lean NGT (p<0.05). One month after BPD, the incretin effect was not changed, but at 12 months it reached the level of the lean NGT group (p>0.05). IS improved (p<0.05) 1 month after BPD and at 12 months it resembled the levels of the lean NGT group. Insulin secretory rate and beta-cell glucose sensitivity increased after BPD and achieved levels similar to lean NGT group 1 month after BPD and even higher levels at 12 months (p<0.05). Conclusions: BPD has no acute impact on the reduced incretin effect, but 12 months after surgery the incretin effect normalizes alongside normalization of glucose control, IS and beta-cell function.
Resumo:
This work presents a study of selected outcrops from the Pedra das Torrinhas Formation of the Guaritas Group (Cambrian, Camaquã Basin), near the basin bordering Encantadas Fault Zone. The studied succession includes alluvial fan deposits that pass laterally into eolian deposits. Sedimentary facies and architectural element analysis were performed, followed by sedimentary petrography and microscopic porosity analysis, aiming to characterize the porosity of the deposits and its spatial distribution. The main objective was to contribute to a better understanding of the porosity spatial distribution in depositional systems characterized by the interaction between alluvial and eolian processes, with special reference to deposits formed prior to the development of terrestrial plants. Porosity values are related to depositional processes, with higher porosities associated to eolian dune deposits (mean of 8.4%), and lower porosity related to interdunes (mean of 3.4%) and alluvial fans (mean of 4.3%). Architectural elements analysis revealed the spatial relationships of these deposits, a response to the interplay of the eolian and alluvial processes. The integration of porosity data reveals that the interaction of alluvial and eolian processes results in heterogeneous distribution of porosity at the facies association scale. Eolian reworking of alluvial facies increases porosity whereas sheet-flood and other alluvial processes in the interdune areas reduce porosity.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
In this work, we investigate the interplay between surface anchoring and finite-size effects on the smectic-isotropic transition in free-standing smectic films. Using an extended McMillan model, we study how a homeotropic anchoring stabilizes the smectic order above the bulk transition temperature. In particular, we determine how the transition temperature depends on the surface ordering and film thickness. We identify a characteristic anchoring for which the transition temperature does not depend on the film thickness. For strong surface ordering, we found that the thickness dependence of the transition temperature can be well represented by a power-law relation. The power-law exponent exhibits a weak dependence on the range of film thicknesses, as well as on the molecular alkyl tail length. Our results reproduce the main experimental findings concerning the layer-thinning transitions in free-standing smectic films.
Resumo:
The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.
Resumo:
Measurements of the azimuthal anisotropy of high-p(T) neutral pion (pi(0)) production in Au+Au collisions at s(NN)=200 GeV by the PHENIX experiment are presented. The data included in this article were collected during the 2004 Relativistic Heavy Ion Collider running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi(0) mesons detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v(2)) of the angular distributions are presented as a function of pi(0) transverse momentum (p(T)) for different bins in collision centrality. Measured reaction plane dependent pi(0) yields are used to determine the azimuthal dependence of the pi(0) suppression as a function of p(T), R(AA)(Delta phi,p(T)). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi(0) suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.
Resumo:
Magnetotransport measurements on bilayer electron systems reveal repeated reentrance of the resistance minima at filling factors nu=4N+1 and nu=4N+3, where N is the Landau index number, in the tilted magnetic field. At high filling factors, the Shubnikov-de Haas oscillations exhibit beating effects at certain tilt angles. We attribute such behavior to oscillations of the tunneling gap due to Aharonov-Bohm interference effect between cyclotron orbits in different layers. The interplay between quantum and quasiclassical regimes is established.
Resumo:
We adopt the Dirac model for quasiparticles in graphene and calculate the finite-temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature, the Casimir interaction in such system is just one-half of that for two ideal conductors separated by the same distance. In this limit, a single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while the contribution of the TM mode saturates at the ideal-metal value. The behavior of the Casimir interaction for intermediate temperatures and separations accessible in experiments is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine-structure constant and the Fermi velocity.
Resumo:
The longitudinal resistivity rho(xx) of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density-magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings ""break'' at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (similar to 50%) within, consistent with the NMR data of Zhang et al. [Phys. Rev. Lett. 98, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation effects leads to a collapse of the rings at some critical angle theta(c), in agreement with the data of Guo et al. [Phys. Rev. B 78, 233305 (2008)].