988 resultados para LUNG DAMAGE
Resumo:
35 p.
Resumo:
This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material.
Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed.
Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy contributions are presented.
Criteria for the estimation of damage to services caused by ground movements arising from tunnelling
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
We present a destructive method for detecting and measuring subsurface damage of Nd-doped phosphate glasses. An instrument based on the dimple method - a destructive method - was developed. Subsurface damage depth produced in each fabrication procedure was obtained. We extend the surface roughness-subsurface damage relation to Nd-doped phosphate glasses. The constant ratio of subsurface damage and surface roughness was obtained as well. We also analyse the relation of abrasive size and subsurface damage experimentally. From a measurement of the surface roughness or abrasive size, one can obtain an accurate estimate of the damage layer thickness that must be eliminated by polishing or subsequent grinding operations. (C) 2007 Elsevier GmbH. All rights reserved.