891 resultados para Knowledge-based asets
Resumo:
In businesses such as the software industry, which uses knowledge as a resource, activities are knowledge intensive, requiring constant adoption of new technologies and practices. Another feature of this environment is that the industry is particularly susceptible to failure; with this in mind, the objective of this research is to analyze the integration of Knowledge Management techniques into the activity of risk management as it applies to software development projects of micro and small Brazilian incubated technology-based firms. Research methods chosen were the Multiple Case Study. The main risk factor for managers and developers is that scope or goals are often unclear or misinterpreted. For risk management, firms have found that Knowledge Management techniques of conversion combination would be the most applicable for use; however, those most commonly used refer to the conversion mode as internalization.. © 2013 Elsevier Ltd. APM and IPMA.
Resumo:
Objective: To determine current food handling practices, knowledge and beliefs of primary food handlers with children 10 years old and the relationship between these components. Design: Surveys were developed based on FightBac!™ concepts and the Health Belief Model (HBM) construct. Participants: The majority of participants (n= 503) were females (67%), Caucasians (80%), aged between 30 to 49 years old (83%), had one or two children (83%), prepared meals all or most of the time (76%) and consumed meals away from home three times or less per week (66%). Analysis: Descriptive statistics and inferential statistics using Spearman’s rank correlation coefficient (rho) (p<0.05 and one-tail) and Chi-square were used to examine frequency and correlations. Results: Few participants reached the food safety objectives of Healthy People 2010 for safe food handling practices (79%). Mixed results were reported for perceived susceptibility. Only half of the participants (53-54%) reported high perceived severity for their children if they contracted food borne illness. Most participants were confident of their food handling practices for their children (91%) and would change their food handling practices if they or their family members previously experienced food poisoning (79%). Participants’ reasons for high self-efficacy were learning from their family and independently acquiring knowledge and skills from the media, internet or job. The three main barriers to safe food handling were insufficient time, lots of distractions and lack of control of the food handling practices of other people in the household. Participants preferred to use food safety information that is easy to understand, has scientific facts, causes feelings of health-threat and has lots of pictures or visuals. Participants demonstrate high levels of knowledge in certain areas of the FightBac!TM concepts but lacked knowledge in other areas. Knowledge and cues to action were most supportive of the HBM construct, while perceived susceptibility was least supportive of the HBM construct. Conclusion: Most participants demonstrate many areas to improve in their food handling practices, knowledge and beliefs. Adviser: Julie A. Albrecht
Resumo:
The article aims to analyze the process of knowledge creation in Brazilian technology-based companies, using as a background the driving and restrictive factors found in this process. As the pillars of discussion, four main modes of knowledge conversion were used, according to the Japanese model: socialization, externalization, combination and internalization. The comparative case method through qualitative research was carried out in nine technology-based enterprises that had been incubated or have recently passed through the stage of incubation (so-called graduated companies) in the Technology Park of Sao Carlos, state of Sao Paulo, Brazil. Among the main results, the combination of knowledge was identified as more conscious and structured in graduated companies, in relation to incubated companies. In contrast, it was noted that incubated companies have an environment with greater opportunities for socialization, internalization and externalization of knowledge.
Resumo:
Abstract Background Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Methods Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students’ prior knowledge (i.e. before undergoing the learning method), short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method) were assessed with a multiple choice questionnaire. Students’ performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Results Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. Conclusions The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students’ short and long-term knowledge retention.
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.
Resumo:
Valid information for physicians in Switzerland concerning knowledge and continuing education in traffic medicine is not available. Also, their attitude to the legally prescribed periodic driving fitness examinations is unclear. In order to gain more information about these topics, 635 resident physicians in Southeast Switzerland were sent a questionnaire (response rate 52%). In a self-estimation, 79% of the queried physicians claimed to know the minimal medical requirements for drivers which are important in their specialty. Statistically significant differences existed between the specialties, whereby general practitioners most frequently claimed to know the minimal medical requirements (90%). It appears that the minimal medical requirements for drivers are well known to the queried physicians. Fifty-two percent of the physicians favored an expansion of continuing education in traffic medicine. Such an expansion was desired to a lesser extent by physicians without knowledge of the minimal requirements (p < 0.001). A clear majority of the medical professionals adjudged the legally prescribed periodic driving fitness examinations as being an expedient means to identify unfit drivers. A national standardized form for reporting potentially unfit drivers to the licensing authorities was supported by 68% of the responding physicians. Such a form could simplify and standardize the reports to the licensing authorities.
Resumo:
To prepare an answer to the question of how a developing country can attract FDI, this paper explored the factors and policies that may help bring FDI into a developing country by utilizing an extended version of the knowledge-capital model. With a special focus on the effects of FTAs/EPAs between market countries and developing countries, simulations with the model revealed the following: (1) Although FTA/EPA generally ends to increase FDI to a developing country, the possibility of improving welfare through increased demand for skilled and unskilled labor becomes higher as the size of the country declines; (2) Because the additional implementation of cost-saving policies to reduce firm-type/trade-link specific fixed costs ends to depreciate the price of skilled labor by saving its input, a developing country, which is extremely scarce in skilled labor, is better off avoiding the additional option; (3) If a country hopes to enjoy larger welfare gains with EPA, efforts to increase skilled labor in the country, such as investing in education, may be beneficial.
Resumo:
Knowledge management is critical for the success of virtual communities, especially in the case of distributed working groups. A representative example of this scenario is the distributed software development, where it is necessary an optimal coordination to avoid common problems such as duplicated work. In this paper the feasibility of using the workflow technology as a knowledge management system is discussed, and a practical use case is presented. This use case is an information system that has been deployed within a banking environment. It combines common workflow technology with a new conception of the interaction among participants through the extension of existing definition languages.
Resumo:
There is growing concern over the challenges for innovation in Freight Pipeline industry. Since the early works of Chesbrough a decade ago, we have learned a lot about the content, context and process of open innovation. However, much more research is needed in Freight Pipeline Industry. The reality is that few corporations have institutionalized open innovation practices in ways that have enabled substantial growth or industry leadership. Based on this, we pursue the following question: How does a firm’s integration into knowledge networks depend on its ability to manage knowledge? A competence-based model for freight pipeline organizations is analysed, this model should be understood by any organization in order to be successful in motivating professionals who carry out innovations and play a main role in collaborative knowledge creation processes. This paper aims to explain how can open innovation achieve its potential in most Freight Pipeline Industries.
Resumo:
Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.
Resumo:
The aim of this chapter is to discuss the applicability of recently proposed knowledge modelling tools to the development of agent-based systems. The discussion is derived from the real world experience of a particular software tool called KSM (Knowledge Structure Manager). The chapter provides details about this tool and then proceeds to show in which forms the software may be used to support the development of agent-based systems. Two multiagent systems, one in the field of telecommunications management and the other one in the field of flood control, are described. Conclusions about these studies are presented, summarizing the main contributions that knowledge modelling tools can bring to the development of agent-based systems.
Resumo:
The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.