677 resultados para Kalman, Filmagem de


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bibliography: p. 24-25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reliable perception of the real world is a key-feature for an autonomous vehicle and the Advanced Driver Assistance Systems (ADAS). Obstacles detection (OD) is one of the main components for the correct reconstruction of the dynamic world. Historical approaches based on stereo vision and other 3D perception technologies (e.g. LIDAR) have been adapted to the ADAS first and autonomous ground vehicles, after, providing excellent results. The obstacles detection is a very broad field and this domain counts a lot of works in the last years. In academic research, it has been clearly established the essential role of these systems to realize active safety systems for accident prevention, reflecting also the innovative systems introduced by industry. These systems need to accurately assess situational criticalities and simultaneously assess awareness of these criticalities by the driver; it requires that the obstacles detection algorithms must be reliable and accurate, providing: a real-time output, a stable and robust representation of the environment and an estimation independent from lighting and weather conditions. Initial systems relied on only one exteroceptive sensor (e.g. radar or laser for ACC and camera for LDW) in addition to proprioceptive sensors such as wheel speed and yaw rate sensors. But, current systems, such as ACC operating at the entire speed range or autonomous braking for collision avoidance, require the use of multiple sensors since individually they can not meet these requirements. It has led the community to move towards the use of a combination of them in order to exploit the benefits of each one. Pedestrians and vehicles detection are ones of the major thrusts in situational criticalities assessment, still remaining an active area of research. ADASs are the most prominent use case of pedestrians and vehicles detection. Vehicles should be equipped with sensing capabilities able to detect and act on objects in dangerous situations, where the driver would not be able to avoid a collision. A full ADAS or autonomous vehicle, with regard to pedestrians and vehicles, would not only include detection but also tracking, orientation, intent analysis, and collision prediction. The system detects obstacles using a probabilistic occupancy grid built from a multi-resolution disparity map. Obstacles classification is based on an AdaBoost SoftCascade trained on Aggregate Channel Features. A final stage of tracking and fusion guarantees stability and robustness to the result.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports preliminary progress on a principled approach to modelling nonstationary phenomena using neural networks. We are concerned with both parameter and model order complexity estimation. The basic methodology assumes a Bayesian foundation. However to allow the construction of pragmatic models, successive approximations have to be made to permit computational tractibility. The lowest order corresponds to the (Extended) Kalman filter approach to parameter estimation which has already been applied to neural networks. We illustrate some of the deficiencies of the existing approaches and discuss our preliminary generalisations, by considering the application to nonstationary time series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Using electricity load data and training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise and forgetting factors for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. We also find that a recently-proposed alternative novelty criterion, found to be more robust in stationary environments, does not fare so well in the non-stationary case due to the need for filter adaptability during training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Bayesian framework for regression problems, which covers areas which are usually dealt with by function approximation. An online learning algorithm is derived which solves regression problems with a Kalman filter. Its solution always improves with increasing model complexity, without the risk of over-fitting. In the infinite dimension limit it approaches the true Bayesian posterior. The issues of prior selection and over-fitting are also discussed, showing that some of the commonly held beliefs are misleading. The practical implementation is summarised. Simulations using 13 popular publicly available data sets are used to demonstrate the method and highlight important issues concerning the choice of priors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sieve plate distillation column has been constructed and interfaced to a minicomputer with the necessary instrumentation for dynamic, estimation and control studies with special bearing on low-cost and noise-free instrumentation. A dynamic simulation of the column with a binary liquid system has been compiled using deterministic models that include fluid dynamics via Brambilla's equation for tray liquid holdup calculations. The simulation predictions have been tested experimentally under steady-state and transient conditions. The simulator's predictions of the tray temperatures have shown reasonably close agreement with the measured values under steady-state conditions and in the face of a step change in the feed rate. A method of extending linear filtering theory to highly nonlinear systems with very nonlinear measurement functional relationships has been proposed and tested by simulation on binary distillation. The simulation results have proved that the proposed methodology can overcome the typical instability problems associated with the Kalman filters. Three extended Kalman filters have been formulated and tested by simulation. The filters have been used to refine a much simplified model sequentially and to estimate parameters such as the unmeasured feed composition using information from the column simulation. It is first assumed that corrupted tray composition measurements are made available to the filter and then corrupted tray temperature measurements are accessed instead. The simulation results have demonstrated the powerful capability of the Kalman filters to overcome the typical hardware problems associated with the operation of on-line analyzers in relation to distillation dynamics and control by, in effect, replacirig them. A method of implementing estimator-aided feedforward (EAFF) control schemes has been proposed and tested by simulation on binary distillation. The results have shown that the EAFF scheme provides much better control and energy conservation than the conventional feedback temperature control in the face of a sustained step change in the feed rate or multiple changes in the feed rate, composition and temperature. Further extensions of this work are recommended as regards simulation, estimation and EAFF control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the performance of composite leading indicators of turning points of inflation in the Euro area, constructed by combining the techniques of Fourier analysis and Kalman filters with the National Bureau of Economic Research methodology. In addition, the study compares the empirical performance of Euro Simple Sum and Divisia monetary aggregates and provides a tentative answer to the issue of whether or not the UK should join the Euro area. Our findings suggest that, first, the cyclical pattern of the different composite leading indicators very closely reflect that of the inflation cycle for the Euro area; second, the empirical performance of the Euro Divisia is better than its Simple Sum counterpart and third, the UK is better out of the Euro area. © 2005 Taylor & Francis Group Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article examines whether UK portfolio returns are time varying so that expected returns follow an AR(1) process as proposed by Conrad and Kaul for the USA. It explores this hypothesis for four portfolios that have been formed on the basis of market capitalization. The portfolio returns are modelled using a kalman filter signal extraction model in which the unobservable expected return is the state variable and is allowed to evolve as a stationary first order autoregressive process. It finds that this model is a good representation of returns and can account for most of the autocorrelation present in observed portfolio returns. This study concludes that UK portfolio returns are time varying and the nature of the time variation appears to introduce a substantial amount of autocorrelation to portfolio returns. Like Conrad and Kaul if finds a link between the extent to which portfolio returns are time varying and the size of firms within a portfolio but not the monotonic one found for the USA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article a partial-adjustment model, which shows how equity prices fail to adjust instantaneously to new information, is estimated using a Kalman filter. For the components of the Dow Jones Industrial 30 index I aim to identify whether overreaction or noise is the cause of serial correlation and high volatility associated with opening returns. I find that the tendency for overreaction in opening prices is much stronger than for closing prices; therefore, overreaction rather than noise may account for differences in the return behavior of opening and closing returns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the posterior distributions in closed form, based on solving an optimisation problem, in a spirit similar to 3D VAR analysis, but seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is used to estimate the advection field based on the assimilated precipitation fields at two times. The model is applied to tracking precipitation dynamics in a realistic setting, using UK Met Office radar data from both a summer convective event and a winter frontal event. The performance of the model is assessed both traditionally and using probabilistic measures of fit based on ROC curves. The model is shown to provide very good assimilation characteristics, and promising forecast skill. Improvements to the forecasting scheme are discussed