733 resultados para KLEBSIELLA PNEUMONIAE
Resumo:
The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.
Resumo:
The next generation of vaccine adjuvant are represented by a wide ranging set of molecules called Toll like agonists (TLR’s). Although many of these molecules are complex structures extracted from microorganisms, small molecule TLR agonists have also been identified. However, delivery systems have not been optimized to allow their effective delivery in conjunction with antigens. Here we describe a novel approach in which a small molecule TLR agonist has been conjugated directly to antigens to ensure effective co delivery. We describe the conjugation of a relevant protein, a recombinant protective antigen from S.pneumoniae (RrgB), which is linked to a TLR7 agonist. Following thorough characterization to ensure there was no aggregation, the conjugate was evaluated in a murine infection model. Results showed that the conjugate extended animals’ survival after lethal challenge with S.pneumoniae. Comparable results were obtained with a 10 fold lower dose than that of the native unconjugated antigen. Notably, the animals immunized with the same dose of unconjugated TLR7 agonist and antigen showed no adjuvant effect. The increased immunogenicity was likely a consequence of the co-localization of TLR7 agonist and antigen by chemical binding and is was more effective than simple co-administration. Likely, this approach can be adopted to reduce the dose of antigen required to induce protective immunity, and potentially increase the safety of a broad variety of vaccine candidates
Resumo:
Chlamydiae are obligate intracellular bacteria with a strong global prevalence. They cause infections of the eye, lung and the genital tract and can either replicate in inclusion compartments or persist inside their host cell. In this thesis we focused on two aspects of chlamydiae infection. We hypothesize that transcription factor AP-1 is crucial for a replicative chlamydiae infection in epithelial cells. In addition we suggest that chlamydiae hide inside apoptotic blebs for a silent uptake by macrophages as immune evasion strategy.rnFocusing on AP-1, we could demonstrate that during Chlamydia pneumoniae infection, protein expression and phosphorylation of the AP-1 family member c-Jun significantly increased in a time and dose dependent manner. A siRNA knockdown of c-Jun in HEp-2 cells reduced chlamydial load, resulting in smaller inclusions and a significant lower chlamydial recovery. Furthermore, inhibition of the c-Jun containing AP-1 complexes, using Tanshinone IIA, changed the replicative infection into a persistent phenotype, characterized by (i) smaller, aberrant inclusions, (ii) a strong decrease in chlamydial load, as well as by (iii) its reversibility after removal of Tanshinone IIA. As chlamydiae are energy parasites, we investigated whether Tanshinone IIA interferes with energy/metabolism related processes. rnA role for autophagy or gene expression of glut-1 and c-jun in persistence could not be determined. However we could demonstrate Tanshinone IIA treatment to be accompanied by a significant decrease of ATP levels, probably causing a chlamydiae persistent phenotype.rnRegarding the chlamydial interaction with human primary cells we characterized infection of different chlamydiae species in either pro-inflammatory (type I) or anti-inflammatory (type II) human monocyte derived macrophages (hMDM). We found both phenotypes to be susceptible to chlamydiae infection. Furthermore, we observed that upon Chlamydia trachomatis and GFP-expressing Chlamydia trachomatis infection more hMDM type II were infected. However the chlamydial load was higher in hMDM type I and correspondingly, more replicative-like inclusions were found in this phenotype. Next, we focused on the chlamydial transfer using a combination of high speed live cell imaging and GFP-expressing Chlamydia trachomatis for optimal visualization. Thereby, we could successfully visualize the formation of apoptotic, chlamydiae-containing blebs and the interaction of hMDM with these blebs. Moreover, we observed the development of a replicative infection in hMDM. rnIn conclusion, we demonstrated a crucial role of AP-1 for C. pneumoniae development and preliminary time lapse data suggest that chlamydiae can be transferred to hMDMs via apoptotic blebs. In all, these data may contribute to a better understanding of chlamydial infection processes in humans.rn
Resumo:
Hemolytic-uremic syndrome (HUS) is a leading cause of acute renal failure in childhood. In its typical presentation, it is preceded by an episode of diarrhea mostly due to Shiga-toxin-producing Escherichia coli. There is important geographical variation of many aspects of this syndrome. Nationwide data on childhood HUS in Switzerland have not been available so far. In a prospective national study through the Swiss Pediatric Surveillance Unit 114 cases (median age 21 months, 50% boys) were reported between April 1997 and March 2003 by 38 pediatric units (annual incidence 1.42 per 10(5) children < or =16 years). Shiga-toxin-producing E. coli were isolated in 32 (60%) of tested stool samples, serotype O157:H7 in eight. Sixteen children presented with only minimal renal involvement, including three with underlying urinary tract infection. Six patients presented with atypical hemolytic-uremic syndrome, and six with HUS due to invasive Streptococcus pneumoniae infection. Mortality was 5.3%, including two out of six children with S. pneumoniae infection. The severity of thrombocytopenia and the presence of central nervous system involvement significantly correlated with mortality. In conclusion, childhood HUS is not rare in Switzerland. Contrasting other countries, E. coli O157:H7 play only a minor role in the etiology. Incomplete manifestation is not uncommon.
Resumo:
Background Pneumococcal conjugate vaccines (PCV) were first licensed for use with 3 primary doses in infancy and a booster dose. The evidence for the effects of different schedules was examined in this systematic review and meta-analysis. Methods We searched 12 databases and trial registers up to March 2010. We selected randomised controlled trials (RCTs), cohort and case–control studies making direct comparisons between PCV schedules with (2p) or (3p) primary doses, with (+1) or without (+0) a booster dose. We extracted data on clinical, nasopharyngeal carriage and immunological outcomes and used meta-analysis to combine results where appropriate. Results Seropositivity levels (antibody concentration ≥0.35 μg/ml) following 3p and 2p PCV schedules were high for most serotypes (5 RCTs). Differences between schedules were generally small and tended to favour 3p schedules, particularly for serotypes 6B and 23F; between-study heterogeneity was high. Seropositivity levels following 3p+1 and 2p+1 schedules were similar but small differences favouring 3p+1 schedules were seen for serotypes 6B and 23F. We did not identify any RCTs reporting clinical outcomes for these comparisons. In 2 RCTs there was weak evidence of a reduction in carriage of S. pneumoniae serotypes included in the vaccine when 3p+0 schedules were compared to 2p+0 at 6 months of age. Conclusions Most data about the relative effects of different PCV schedules relate to immunological outcomes. Both 3p and 2p schedules result in high levels of seropositivity. The clinical relevance of differences in immunological outcomes between schedules is not known. There is an absence of clinical outcome data from RCTs with direct comparisons of any 2p with any 3p PCV schedule.
Resumo:
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.
Resumo:
Chlamydophila (C.) abortus is the most common infectious abortigenic agent in small domestic ruminants in Switzerland. In contrast, the knowledge about chlamydiae in wild ruminants is scarce. As interactions between livestock and Alpine ibex (Capra i. ibex) occur on alpine pastures, the question raises if wild ruminants could play a role as carriers of chlamydiae. Thus, we investigated the prevalence of chlamydiae in Alpine ibex in Switzerland. In total, 624 sera, 676 eye swabs, 84 organ samples and 51 faecal samples from 664 ibex were investigated. Serum samples were tested by two commercial ELISA kits specific for C. abortus. Eye swabs, organs and faecal samples were examined by a Chlamydiaceae-specific real-time polymerase chain reaction (PCR). Positive cases were further investigated by the ArrayTube (AT) microarray method for chlamydial species determination. Of 624 serum samples investigated, 612 animals were negative, whereas nine sera (1.5%) reacted positively in one of the two tests and three sera showed an inconclusive result. Eye swabs of seven out of 412 ibex (1.7%) were tested positive for Chlamydiaceae by real-time PCR. By AT microarray, Chlamydophila (C.) pecorum was identified in two animals, Chlamydophila (C.) pneumoniae was detected in one animal and a mixed infection with C. abortus and C. pecorum was found in four animals. Organs and faecal samples were all negative by real-time PCR analysis. In summary, we conclude that C. abortus is not a common infectious agent in the Swiss ibex population. To our knowledge, this is the first description of C. pneumoniae in ibex. Further studies are necessary to elucidate the situation in other species of wild ruminants as chamois (Rupicapra r. rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus c. capreolus) in Switzerland.
Resumo:
Because interactions between livestock and chamois occur on Alpine pastures, transmission of infectious diseases is considered possible. Thus, the occurrence of Chlamydiaceae, Mycoplasma conjunctivae, and pestiviruses in Alpine chamois (Rupicapra r. rupicapra) of the Surselva region (eastern Swiss Alps) was investigated. In total, 71 sera, 158 eye swabs, 135 tissue samples, and 23 fecal samples from 85 chamois were analyzed. The sera were tested by 2 enzyme-linked immunosorbent assay (ELISA) kits specific for Chlamydophila abortus. Eye swabs, tissue, and fecal samples were examined by a Chlamydiaceae-specific real-time polymerase chain reaction (PCR). Positive cases were further investigated by microarray method. One serum sample (1.4%) was positive in 1 of the ELISAs. Eye swabs of 3 chamois (3.8%) were positive for Chlamydiaceae. The microarray method revealed the presence of Chlamydophila abortus, C pecorum, and C pneumoniae. All tissue and fecal samples were negative. With real-time PCR, 3.9% of the chamois tested positive for Mycoplasma conjunctivae. One chamois had a simultaneous infection with Al. conjunctivae and 2 chlamydial species (C abortus, C. pecorum). Skin and tongue tissue samples of 35 chamois were negative for pestivirus antigen by immunohistochemistry. It was concluded that in contrast to the findings in Pyrenean chamois (Capra p. pyrenaica) of Spain, the occurrence of Chlamydiaceae in Alpine chamois of the Surselva region is low, and the transmission between domestic and wild Caprinae seems not to be frequent. Comparably, persistent pestiviral infections do not seem to be common in chamois of the Surselva region.
Resumo:
Bacterial meningitis (BM) frequently causes persisting neurofunctional sequelae. Autopsy studies in patients dying from BM show characteristic apoptotic brain injury to the stem cell niche in the subgranular zone of the hippocampal dentate gyrus (DG), and this form of brain damage is associated with learning and memory deficits in experimental BM. With an eye to potential regenerative therapies, the survival, migration, and differentiation of neuronal precursor cells (NPCs) were evaluated after engraftment into the injured hippocampus in vitro and in vivo in an infant rat model of pneumococcal meningitis. Green fluorescent protein (GFP)-expressing NPCs were grafted into the DG of organotypic hippocampal slice cultures injured by challenge with live Streptococcus pneumoniae. Seven days after engraftment, NPCs had migrated from the site of injection into the injured granular layer of the DG and electro-functionally integrated into the hippocampal network. In vivo, GFP-expressing NPCs migrated within 1 week from the injection site in the hilus region to the injured granular layer of the hippocampal DG and showed neuronal differentiation at 2 and 4 weeks after transplantation. Hippocampal injury induced by BM guides grafted NPCs to the area of brain damage and provides a microenvironment for neuronal differentiation and functional integration.
Resumo:
PURPOSE To investigate whether Chlamydia pneumoniae and complement factors were present in surgically removed choroidal neovascular membranes (CNV) of patients with age-related macular degeneration (AMD). METHODS Paraffin sections of 26 CNV were stained for C. pneumoniae or the complement factors H (CFH) and C5, whereas macrophages were identified by positive CD68 staining. Clinical characteristics have been correlated to the immunohistochemical findings. RESULTS C. pneumoniae was found in 68% of the investigated membranes, and 88% of these membranes were also positive for CD68. Staining for CFH and C5 gave a positive reaction in 68 and 41% of the membranes, respectively. Patients with C5-positive membranes had significantly larger CNV mean area and were younger than patients with CFH-positive membranes at the operation time point. CONCLUSIONS Correlations between clinical symptoms and complement factor C5 could be shown. The results strengthen the hypothesis of an involvement of the complement system in AMD.
Resumo:
A novel non-culture based 16S rRNA Terminal Restriction Fragment Length Polymorphism (T-RFLP) method using the restriction enzymes Tsp509I and Hpy166II was developed for the characterization of the nasopharyngeal microbiota and validated using recently published 454 pyrosequencing data. 16S rRNA gene T-RFLP for 153 clinical nasopharyngeal samples from infants with acute otitis media (AOM) revealed 5 Tsp509I and 6 Hpy166II terminal fragments (TFs) with a prevalence of >10%. Cloning and sequencing identified all TFs with a prevalence >6% allowing a sufficient description of bacterial community changes for the most important bacterial taxa. The conjugated 7-valent pneumococcal polysaccharide vaccine (PCV-7) and prior antibiotic exposure had significant effects on the bacterial composition in an additive main effects and multiplicative interaction model (AMMI) in concordance with the 16S rRNA 454 pyrosequencing data. In addition, the presented T-RFLP method is able to discriminate S. pneumoniae from other members of the Mitis group of streptococci, which therefore allows the identification of one of the most important human respiratory tract pathogens. This is usually not achieved by current high throughput sequencing protocols. In conclusion, the presented 16S rRNA gene T-RFLP method is a highly robust, easy to handle and a cheap alternative to the computationally demanding next-generation sequencing analysis. In case a lot of nasopharyngeal samples have to be characterized, it is suggested to first perform 16S rRNA T-RFLP and only use next generation sequencing if the T-RFLP nasopharyngeal patterns differ or show unknown TFs.
Resumo:
The aim of this study was to obtain comprehensive data on clinical presentation, microbiology, computed tomography, surgical findings and histology in acute, sub-acute and chronic mastoiditis. We performed a prospective, observational study in children under 16 years of age presenting to our institution during the 2-year period beginning in April 2000. The children were examined and their condition treated in accordance with a standardized protocol elaborated by the paediatric, otolaryngology (ORL) and radiology departments. Thirty-eight patients were hospitalized (22 with acute mastoiditis, seven with sub-acute mastoiditis, nine with chronic mastoiditis). There were 30 complications present in 21 patients (55%). Streptococcus pyogenes was the most common pathogen (7/24 cases), followed by Streptococcus pneumoniae (4/24 cases). Mastoid surgery was performed in 29 patients. Histology of mastoid tissue revealed predominantly acute inflammation in two cases, mixed acute/chronic inflammation in 19 cases and predominantly chronic inflammation in seven cases. Radiologic data were evaluated retrospectively. Spiral, volume-based high-resolution (HR) computed tomography (CT) of the temporal bone had a sensitivity of 100%, specificity of 38%, positive predictive value (PPV) of 50% and negative predictive value (NPV) of 100% in detecting coalescence of mastoid trabeculae. Cranial CT with contrast had a sensitivity of 80%, specificity of 94%, PPV of 80% and NPV of 94% in identifying intra-cranial extension. Conclusion: histological evidence suggests that sub-acute/chronic infection underlies not only sub-acute and chronic mastoiditis, but most cases of acute mastoiditis as well. HR-CT of the temporal bone is effective in ruling out coalescence. Cranial CT is valuable in identifying intra-cranial extension. Cranial and HR-CT are recommended in the examination of children with mastoiditis.
Resumo:
In experimental bacterial meningitis, matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) contribute to brain damage. MMP-9 increases in cerebrospinal fluid (CSF) during bacterial meningitis and is associated with the brain damage that is a consequence of the disease. This study assesses the origin of MMP-9 in bacterial meningitis and how ROS modulate its activity. Rat brain-slice cultures and rat polymorphonuclear cells (PMNs) that had been challenged with capsule-deficient heat-inactivated Streptococcus pneumoniae R6 (hiR6) released MMP-9. Coincubation with either catalase, with the myeloperoxidase inhibitor azide, or with the hypochlorous acid scavenger methionine almost completely prevented activation, but not the release, of MMP-9, in supernatants of human PMNs stimulated with hiR6. Thus, in bacterial meningitis, both brain-resident cells and invading PMNs may act as sources of MMP-9, and stimulated PMNs may activate MMP-9 via an ROS-dependent pathway. MMP-9 activation by ROS may represent a target for therapeutic intervention in bacterial meningitis.
Resumo:
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.
Resumo:
Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.