896 resultados para KIDNEY TRANSPLANTATION
Resumo:
Background and objectives: There have been few studies investigating acute kidney injury (AKI) in patients infected with the 2009 pandemic influenza A (H1N1) virus. Therefore, the objective of this study was to identify the factors associated with AKI in H1N1-infected patients. Design, setting, participants, & measurements: This was a study of 47 consecutive critically ill adult patients with reverse transcriptase-PCR-confirmed H1N1 infection in Brazil. Outcome measures were AKI (as defined by the Risk, Injury, Failure, Loss, and End-stage renal failure [RIFLE] criteria) and in-hospital death. Results: AKI was identified in 25 (53%) of the 47 H1N1-infected patients. AKI was associated with vasopressor use, mechanical ventilation, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, and severe acidosis as well as with higher levels of C-reactive protein and lactic dehydrogenase upon intensive care unit (ICU) admission. A nephrology consultation was requested for 16 patients (64%), and 8 (50%) required dialysis. At ICU admission, 7 (15%) of the 25 AKI patients had not yet progressed to AKI. However, by 72 hours after ICU admission, no difference in RIFLE score was found between AKI survivors and nonsurvivors. Of the 47 patients, 9 (19%) died, all with AKI. Mortality was associated with mechanical ventilation, vasopressor use, dialysis, high APACHE II score, high bilirubin levels, and a low RIFLE score at ICU admission. Conclusions: Among critically ill H1N1-infected patients, the incidence of AKI is high. In such patients, AKI is mainly attributable to shock. Clin J Am Soc Nephrol 5: 1916-1921, 2010. doi: 10.2215/CJN.00840110
Resumo:
Aims: To investigate the effect of N omega-Nitro-L-arginine methyl ester CL-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. Main methods: L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. Key findings: We observed an increase in systolic blood pressure from 115 +/- 12 mmHg (control group) to 152 18 mmHg (L-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5`TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. Significance: The general increase in ATP hydrolysis and in ecto-5`-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.
Resumo:
Background/Aims: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H(+) ions performed by H(+)-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H(+)-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. Methods and Results: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO(3)(-) reabsorption was significantly reduced in the presence of the Cl(-) channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH(4)Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl(-). siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H(+)-ATPase activity and V-ATPase B2 subunit expression. Conclusion: These results indicate a role of chloride in modulating plasma membrane H(+)-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Glutamine is the most important donor of NH(3) in kidney playing an important role in acid-base buffering system. Besides this effect, glutamine presents many other relevant functions in the whole body, such as a precursor of arginine in adult and neonates. In addition to these effects, some studies have shown that glutamine can potentiate renal disease. In the present study, the effect of short-term treatment (15 days) with glutamine on control and diabetic rats was investigated. Using biochemical, histological and molecular biology analysis from control and diabetic rats we verified that glutamine supplementation increase in pro-inflammatory interleukins (IL)-1 beta and IL-6 content in renal cortex and induce alteration in glomerular characteristics. This study showed that short-term treatment with glutamine in association with increased glucose levels could cause important alterations in glomerular morphology that may result in fast progression of kidney failure.
Immobilized Kidney 28-kDa Endostatin- Related (KES28kDa) Fragment Promotes Endothelial Cell Survival
Resumo:
Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Spleen or spleen plus bone marrow cells from (BALB/c x C57Bl/6)F1 donors were transferred into BALB/c recipients 21 days before skin or cardiac transplantation. Prolonged graft survival was observed on recipients treated with the mixture of donor-derived cells as compared to those treated with spleen cells alone. We evaluated the expression of CD45RB and CD44 by splenic CD4(+) and CD8(+) T cells 7 and 21 days after donor cell transfer. The populations of CD8(+)CD45RB(low) and CD8(+)CD44(high) cells were significantly decreased in mice pre-treated with donor spleen and bone marrow cells as compared to animals treated with spleen cells only, although these cells expanded in both groups when compared to an earlier time-point. No differences were observed regarding CD4+ T cell population when recipients of donor-derived cells were compared. An enhanced production of IL-10 was observed seven days after transplantation in the supernatants of spleen cell cultures of mice treated with spleen and bone marrow cells. Taken together these data suggest that donor-derived bone marrow cells modulate the sensitization of the recipient by semi-allogeneic spleen cells in part by delaying the generation of activated/memory CD8(+) T cells leading to enhanced graft survival. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Introduction: TLR-4 has also been identified as a receptor for endogenous alarmins, which are increased post transplantation. TLR-4 has also been associated with a polymorphism that could impact graft outcome. Objective: To assess the expression of TLR-4 in kidney transplant patients carrying or not a polymorphism. Methods: TLR-4 polymorphism (A299G/T399I) was studied in 200 renal transplant patients. Healthy volunteers were also enrolled as control group. The polymorphism analysis was performed using restriction enzymes technique (RFLP). Functionality of TLR-4 polymorphism was assessed in samples from controls by quantification of TNF-alpha after LPS stimulus. TLR-4 and -2 expressions were also analyzed by flow cytometry. Results: TLR-4 polymorphism was present in 8.5% of renal transplant patients. This polymorphism was associated with impairment in TNF-alpha secretion. In general, in renal transplant patients, TLR-4 expression in monocytes and in neutrophils was lower than in health volunteers. TLR-2 and TLR-4 expressions in healthy volunteers with A299G/T399I TLR-4 polymorphism was higher than in wild-type genotype healthy volunteers (p<0.01 and p<0.05, respectively), and also higher than A299G/T399I TLR-4 polymorphism renal transplant patients (p<0.05). TLR-2 expression on neutrophils in wild-type genotype renal transplant patients was higher compared to wild-type genotype healthy volunteers, and was also higher in relation to A299G/T399I kidney transplanted patients (p<0.01). Conclusion: Stable renal transplant patients with TLR-4 polymorphism have a lower expression of TLR-4 and TLR-2 receptors in peripheral mononuclear cells, which ultimately indicate a less responsiveness for alarmins. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. The host response to sepsis involves an inflammatory response, whereby the pathogen is initially sensed by innate immune receptors (pattern recognition receptors [PRRs]). When it persists, this immune response leads to secretion of proinflammatory products that induce organ dysfunction such as renal failure and consequently increased mortality. Moreover, the injured tissue releases molecules resulting from extracellular matrix degradation or dying cells that function as alarmines, which are recognized by PRR in the absence of pathogens in a second wave of injury. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are the best characterized PRRs. They are expressed in many cell types and throughout the nephron. Their activation leads to translocation of nuclear factors and synthesis of proinflammatory cytokines and chemokines. TLRs` signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1 beta and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.
Resumo:
One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.
Resumo:
This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.
Resumo:
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073
Resumo:
Therapy with stem cells has showed to be promising for acute kidney injury (AKI), although how it works is still controversial. Modulation of the inflammatory response is one possible mechanism. Most of published data relies on early time and whether the protection is still maintained after that is not known. Here, we analyzed whether immune modulation continues after 24 h of reperfusion. MSC were obtained from male Wistar rats. After 3-5 passages, cells were screened for CD73, CD90, CD44, CD45, CD29 and CD 31. In addition, MSC were submitted to differentiation in adipocyte and in osteocyte. AKI was induced by bilaterally clamping of renal pedicles for 60 min. Six hours after injury, MSC (2 x 105 cells) were administered intravenously. MSC-treated animals presented the lowest serum creatinine compared to non-treated animals (24 h: 1.3 +/- 0.21 vs. 3.23 +/- 0.89 mg/dl, p<0.05). The improvement in renal function was followed by a lower expression of IL-1b, IL-6 and TNF-alpha and higher expression of IL-4 and IL-10. However, 48 h after reperfusion, this cytokine profile has changed. The decrease in Th1 cytokines was less evident and IL-6 was markedly up regulated. PCNA analysis showed that regeneration occurs faster in kidney tissues of MSC-treated animals than in controls at 24 h. And also ratio of Bcl-2/Bad was higher at treated animals after 24 and 48 h. Our data demonstrated that the immunomodulatory effects of MSC occur at very early time point, changing the inflammation profile toward a Th2 profile. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel