964 resultados para K-theory
Resumo:
Let Sk denote the complete bipartite graph K-1k and let e,, denote the ii-cube. We prove that the obvious necessary conditions for the existence of an S-k-decomposition of Q(n) are sufficient.
Resumo:
Proportionally balanced designs were introduced by Gray and Matters in response to a need for the allocation of markers of the Queensland Core Skills Test to have a certain property. Put simply, markers were allocated to pairs of units in proportions that reflected the relative numbers of markers allocated in total to each unit. In this paper, the first author extends the theoretical results relating to such designs and provides further instances, and two general constructions, in the case that the design comprises blocks of precisely two sizes.
Resumo:
The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.
Resumo:
Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
Motivated by application of twisted current algebra in description of the entropy of Ads(3) black hole, we investigate the simplest twisted current algebra sl(3, c)(k)((2)). Free field representation of the twisted algebra, and the corresponding twisted Sugawara energy-momentum tensor are obtained by using three (beta, gamma) pairs and two scalar fields. Primary fields and two screening currents of the first kind are presented. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The stability of difference inclusions x(k+1) is an element of F(x(k)) is studied, where F(x) = {F(x, gimel) : is an element of Lambda} and the selections F(., gimel) : E -->E assume values in a Banach space E, partially ordered by a cone K. It is assumed that the operators F(.,gimel) are heterotone or pseudoconcave. The main results concern asymptotically stable absorbing sets, and include the case of a single equilibrium point. The results are applied to a number of practical problems.
Resumo:
Any given n X n matrix A is shown to be a restriction, to the A-invariant subspace, of a nonnegative N x N matrix B of spectral radius p(B) arbitrarily close to p(A). A difference inclusion x(k+1) is an element of Ax(k), where A is a compact set of matrices, is asymptotically stable if and only if A can be extended to a set B of nonnegative matrices B with \ \B \ \ (1) < 1 or \ \B \ \ (infinity) < 1. Similar results are derived for differential inclusions.
Resumo:
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate? extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required far viable management of such species in the Florida scrub ecosystem. (C) 2001 Academic Press.
Resumo:
A k-star is the graph K-1,K-k. We prove a general theorem about k-star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k-star factorizations of any power (K-q)(S) of a complete graph with prime power order q, products C-r1 x C-r2 x ... x C-rk of k cycles of arbitrary lengths, and any power (C-r)(S) of a cycle of arbitrary length. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A social identity theory of leadership is described that views leadership as a group process generated by social categorization and prototype-based depersonalization processes associated with social identity. Group identification, as self-categorization, constructs an intragroup prototypicality gradient that invests the most prototypical member with the appearance of having influence; the appearance arises because members cognitively and behaviorally conform to the prototype. The appearance of influence becomes a reality through depersonalized social attraction processes that make followers agree and comply with the leader's ideas and suggestions. Consensual social attraction also imbues the leader with apparent status and creates a status-based structural differentiation within the group into leader(s) and followers, which has characteristics of unequal status intergroup relations. In addition, a fundamental attribution process constructs a charismatic leadership personality for the leader, which further empowers the leader and sharpens the leader-follower status differential. Empirical support for the theory is reviewed and a range of implications discussed, including intergroup dimensions, uncertainty reduction and extremism, power, and pitfalls of prototype-based leadership.