934 resultados para Künnap, Ago: Breakthrough in presentday Uralistics
Resumo:
Abstract. To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El’gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacialinterglacial cycles during the last three million years. Lowresolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.
Resumo:
The Last Interglacial Period (LIP) is often regarded as a good analogue for potential climatic conditions under predicted global warming scenarios. Despite this, there is still debate over the nature, duration and frequency of climatic changes during this period. One particularly contentious issue has been the apparent evidence of climatic instability identified in many marine cores but seemingly lacking from many terrestrial archives, especially within the Arctic, a key region for global climate change research. In this paper, geochemical records from Lake El'gygytgyn, north-eastern Russia, are used to infer past climatic changes during the LIP from within the high Arctic. With a sampling resolution of ~20–~90 years, these records offer the potential for detailed, high-resolution palaeoclimate reconstruction. This study shows that the LIP commenced in central Chukotka ~129 thousand years ago (ka), with the warmest climatic conditions occurring between ~128 and 127 ka before being interrupted by a short-lived cold reversal. Mild climatic conditions then persisted until ~122 ka when a marked reduction in the sedimentation rate suggests a decrease in precipitation. A further climatic deterioration at ~118 ka marks the return to glacial conditions. This study highlights the value of incorporating several geochemical proxies when inferring past climatic conditions, thus providing the potential to identify signals related to environmental change within the catchment. We also demonstrate the importance of considering how changes in sedimentation rate influence proxy records, in order to develop robust palaeoenvironmental reconstructions.
Resumo:
With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.
Resumo:
Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.
Resumo:
INTRODUCTION: Medical schools are charged with providing both a strong basic science and clinical curriculum for their students. In most institutions instruction in performing the core clinical procedures is part of the curriculum, but because of many constraints do medical students practice these procedures as many times as medical students in the past? Several studies have concluded that medical students today feel incompetent to perform basic clinical procedures at the time of graduation. [See PDF for complete abstract]
Resumo:
Platelets represent one of the largest storage pools of angiogenic and oncogenic growth factors in the human body. The observation that thrombocytosis (platelet count >450,000/uL) occurs in patients with solid malignancies was made over 100 years ago. However, the clinical and biological implications as well as the underlying mechanism of paraneoplastic thrombocytosis associated with ovarian carcinoma remains unknown and were the focus of the current study. Following IRB approval, patient data were collected on 619 patients from 4 U.S. centers and used to test associations between platelet count at initial diagnosis, clinicopathologic factors, and outcome. In vitro effects of plasma-purified platelets on ovarian cancer cell proliferation, docetaxel-induced apoptosis, and migration were evaluated using BrdU-PI flow cytometric and two-chamber chemotaxis assays. In vivo effects of platelet depletion on tumor growth, proliferation, apoptosis, and angiogenesis were examined using an anti-platelet antibody (anti-mouse glycoprotein 1ba, Emfret) to reduce platelets by 50%. Complete blood counts and number of mature megakaryocytes in the spleen and bone marrow were compared between control mice and ovarian cancer-bearing mice. Plasma levels of key megakaryo- and thrombopoietic factors including thrombopoietin (TPO), IL-1a, IL-3, IL-4, IL-6, IL-11, G-CSF, GM-CSF, stem cell factor, and FLT-3 ligand were assayed in a subset of 150 patients at the time of initial diagnosis with advanced stage, high grade epithelial ovarian cancer using immunobead-based cytokine profiling coupled with the Luminex® xMAP platform. Plasma cytokines significantly associated with thrombocytosis in ovarian cancer patients were subsequently evaluated in mouse models of ovarian cancer using ELISA immunoassays. The results of human and mouse plasma cytokine profiling were used to inform subsequent in vivo studies evaluating the effect of siRNA-induced silencing of select megakaryo- and thrombopoietic cytokines on paraneoplastic thrombocytosis. Thirty-one percent of patients had thrombocytosis at initial diagnosis. Compared to patients with normal platelet counts, women with thrombocytosis were significantly more likely to have advanced stage disease (p<0.001) and poor median progression-free (0.94 vs 1.35 years, p<0.001) and overall survival (2.62 vs 4.65 years, p<0.001). On multivariate analysis, thrombocytosis remained an independent predictor of decreased overall survival. Our analysis revealed that thrombocytosis significantly increases the risk of VTE in ovarian cancer patients and that thrombocytosis is an independent predictor of increased mortality in women who do develop a blood clot. Platelets increased ovarian cancer cell proliferation and migration by 4.1- and 2.8-fold (p<0.01), respectively. Platelets reduced docetaxel-induced apoptosis in ovarian cancer cells by 2-fold (p<0.001). In vivo, platelet depletion reduced tumor growth by 50%. Staining of in vivo specimens revealed decreased tumor cell proliferation (p<0.001) and increased tumor and endothelial cell apoptosis (p<0.01). Platelet depletion also significantly decreased microvessel density and pericyte coverage (p<0.001). Platelet counts increase by 31-130% in mice with invasive ovarian cancer compared to controls (p<0.01) and strongly correlate with mean megakaryocyte counts in the spleen and bone marrow (r=0.95, p<0.05). Plasma levels of TPO, IL-6, and G-CSF were significantly increased in ovarian cancer patients with thrombocytosis. Plasma levels of the same cytokines were found to be significantly elevated in orthotopic mouse models of ovarian cancer, which consistently develop paraneoplastic thromocytosis. Silencing TPO, IL-6, and G-CSF significantly abrogated paraneoplastic thrombocytosis in vivo. This study provides new understanding of the clinical and biological significance of paraneoplastic thrombocytosis in ovarian cancer and uncovers key humoral factors driving this process. Blocking the development of paraneoplastic thrombocytosis and interfering with platelet-cancer cell interactions could represent novel therapeutic strategies.
Resumo:
Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.
Resumo:
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish A¨ spo¨ Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2 +, 47Ca2 +and more strongly sorbing 86Rb+, 133Ba2 +, 137Cs+. Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.
Resumo:
Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants.
Resumo:
MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Resumo:
I present my explorative research about conflict and social identity. The Social Identity Approach of Henri Tajfel and John Turner is used as theoretical frame in the study. The main question is how the construction of social identity of group members is influenced by an inter-group conflict. The research project consists of two parts: 1. An empirical study conducted with qualitative research methods to investigate a today’s congregation of the Swiss reformed Church who experienced a conflict about twenty years ago. This conflict ended by the separation of a sub-group from the congregations. This group forms an independent community today. Members of both congregations where interviewed about the meaning which membership has for them and about their interpretation of the conflict. 2. An analysis of the Gospel of Matthew with questions who where developed out of the empirical study and the Social Identity Approach to better understand the separation conflict between the Matthean community and the synagogue.
Resumo:
The end of the Last Glacial Maximum (Termination I), roughly 20 thousand years ago (ka), was marked by cooling in the Northern Hemisphere, a weakening of the Asian monsoon, a rise in atmospheric CO2 concentrations and warming over Antarctica. The sequence of events associated with the previous glacial–interglacial transition (Termination II), roughly 136 ka, is less well constrained. Here we present high-resolution records of atmospheric CO2 concentrations and isotopic composition of N2—an atmospheric temperature proxy—from air bubbles in the EPICA Dome C ice core that span Termination II. We find that atmospheric CO2 concentrations and Antarctic temperature started increasing in phase around 136 ka, but in a second phase of Termination II, from 130.5 to 129 ka, the rise in atmospheric CO2 concentrations lagged that of Antarctic temperature unequivocally. We suggest that during this second phase, the intensification of the low-latitude hydrological cycle resulted in the development of a CO2 sink, which counteracted the CO2 outgassing from the Southern Hemisphere oceans over this period.
Resumo:
Present climate in the Nafud desert of northern Saudi Arabia is hyper-arid and moisture brought by north-westerly winds scarcely reaches the region. The existence of abundant palaeolake sediments provides evidence for a considerably wetter climate in the past. However, the existing chronological framework of these deposits is solely based on radiocarbon dating of questionable reliability, due to potential post-depositional contamination with younger 14C. By using luminescence dating, we show that the lake deposits were not formed between 40 and 20 ka as suggested previously, but approximately ca 410 ka, 320 ka, 200 ka, 125 ka, and 100 ka ago. All of these humid phases are in good agreement with those recorded in lake sediments and speleothems from southern Arabia. Surprisingly, no Holocene lake deposits were identified. Geological characteristics of the deposits and diatom analysis suggest that a single, perennial lake covered the entire south-western Nafud ca 320 ka ago. In contrast, lakes of the 200 ka, 125 ka, and 100 ka humid intervals were smaller and restricted to interdune depressions of a pre-existing dune relief. The concurrent occurrence of humid phases in the Nafud, southern Arabia and the eastern Mediterranean suggests that moisture in northern Arabia originated either from the Mediterranean due to more frequent frontal depression systems or from stronger Indian monsoon circulation, respectively. However, based on previously published climate model simulations and palaecolimate evidence from central Arabia and the Negev desert, we argue that humid climate conditions in the Nafud were probably caused by a stronger African monsoon and a distinct change in zonal atmospheric circulation.
Resumo:
Physician Assistants (PAs) are increasingly assuming more responsibilities as "front-line" health providers due to emphasis on primary care and cost-containment in the rapidly changing health care environment. Nutrition plays an important role in health promotion and disease prevention. Primary care providers, including PAs, have enormous potential as nutrition counselors and advocates. There have been no studies to date that address the PAs' adequacy of nutrition education or their attitudes toward the value of nutrition. Therefore, it was the purpose of the study to determine the nutrition knowledge and attitudes of PAs in Texas.^ All certified physician assistants in Texas were eligible for the study. A mailed survey was sent to 1,482 PAs in Texas with a response rate of 54.2%. The sample utilized for data analysis was 764 PAs.^ The study compared the nutrition knowledge mean scores for PAs who graduated from a PA program greater than 11 years ago with those who graduated less than 11 years ago. The study also examined Texas PAs' attitudes about their nutrition education training, the value of nutrition counseling, and their perceived ability to provide such nutrition counseling. Demographic and practice information was collected from the PAs. Demographically, PAs in Texas were found to be comparable to the national population of PAs surveyed in 1996.^ The overall mean level of nutrition knowledge was 70% correct. The mean level of nutrition knowledge was significantly related to the type of PA program that the PA graduated from (i.e., Certificate only or Master's degree level). No significant relationships were found between the mean nutrition knowledge score and age, year of graduation, length of practice, or the type of nutrition education provided in PA program.^ The majority of the PAs surveyed felt that diet and nutrition has an important role in disease prevention and felt that PA programs should place a greater emphasis on nutrition education. Many PAs surveyed were not satisfied with the amount of nutrition education they had received in their PA education programs and were not confident in their ability to provide nutrition counseling to patients.^ Suggestions are offered for improvement in PA nutrition education in the areas of both nutrition knowledge and patient counseling skills. In addition, this study recommends developing and strengthening partnerships between PAs and nutrition organizations. ^