969 resultados para Jean-Pierre Masse


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol/m**2/s, LL; 200 µmol/m**2/s, ML; 460 µmol/m**2/s, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12-18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv'/Fm') decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the near future, the marine environment is likely to be subjected to simultaneous increases in temperature and decreased pH. The potential effects of these changes on intertidal, meiofaunal assemblages were investigated using a mesocosm experiment. Artificial Substrate Units containing meiofauna from the extreme low intertidal zone were exposed for 60 days to eight experimental treatments (four replicates for each treatment) comprising four pH levels: 8.0 (ambient control), 7.7 & 7.3 (predicted changes associated with ocean acidification), and 6.7 (CO2 point-source leakage from geological storage), crossed with two temperatures: 12 °C (ambient control) and 16 °C (predicted). Community structure, measured using major meiofauna taxa was significantly affected by pH and temperature. Copepods and copepodites showed the greatest decline in abundance in response to low pH and elevated temperature. Nematodes increased in abundance in response to low pH and temperature rise, possibly caused by decreased predation and competition for food owing to the declining macrofauna density. Nematode species composition changed significantly between the different treatments, and was affected by both seawater acidification and warming. Estimated nematode species diversity, species evenness, and the maturity index, were substantially lower at 16 °C, whereas trophic diversity was slightly higher at 16 °C except at pH 6.7. This study has demonstrated that the combination of elevated levels of CO2 and ocean warming may have substantial effects on structural and functional characteristics of meiofaunal and nematode communities, and that single stressor experiments are unlikely to encompass the complexity of abiotic and biotic interactions. At the same time, ecological interactions may lead to complex community responses to pH and temperature changes in the interstitial environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO2 (pCO2) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high pCO2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa (Pocillopora damicornis and massive Porites) and two calcified algae (Porolithon onkodes and Halimeda macroloba) under 400, 700 and 1000 µatm pCO2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high pCO2, but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end of century open ocean pH reductions. Projected and current ocean acidification have wide-ranging effects on many aquatic organisms, however the exact mechanisms of the impacts of ocean acidification on many of these animals remains to be characterized. Methods. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 µatm (pH 8.0), 800 µatm (pH 7.7), 1000 µatm (pH 7.6), or 2800 µatm (pH 7.3). At the end of 4 weeks a variety of physiological parameters were measured to assess the impacts of ocean acidification: tissue glycogen content and fatty acid profile, shell micromechanical properties, and response to acute heat shock. To determine the effects of ocean acidification on the underlying molecular physiology of oysters and their stress response, some of the oysters from 400 µatm and 2800 µatm were exposed to an additional mechanical stress and shotgun proteomics were done on oysters from high and low pCO2 and from with and without mechanical stress. Results. At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Discussion. Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthropogenic increases in the partial pressure of CO2 (pCO2) cause ocean acidification, declining calcium carbonate saturation states, reduced coral reef calcification and changes in the compositions of marine communities. Most projected community changes due to ocean acidification describe transitions from hard coral to non-calcifying macroalgal communities; other organisms have received less attention, despite the biotic diversity of coral reef communities. We show that the spatial distributions of both hard and soft coral communities in volcanically acidified, semi-enclosed waters off Iwotorishima Island, Japan, are related to pCO2 levels. Hard corals are restricted to non-acidified low- pCO2 (225 µatm) zones, dense populations of the soft coral Sarcophyton elegans dominate medium- pCO2 (831 µatm) zones, and both hard and soft corals are absent from the highest- pCO2 (1,465 µatm) zone. In CO2-enriched culture experiments, high- pCO2 conditions benefited Sarcophyton elegans by enhancing photosynthesis rates and did not affect light calcification, but dark decalcification (negative net calcification) increased with increasing pCO2. These results suggest that reef communities may shift from reef-building hard corals to non-reef-building soft corals under pCO2 levels (550-970 µatm) predicted by the end of this century, and that higher pCO2 levels would challenge the survival of some reef organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (Pnet), which in turn drove net calcification (Gnet), and altered pH. Pnet exerted the dominant control on [CO3]2- and aragonite saturation state (Omega arag) over the diel cycle. Dark calcification rate decreased after sunset, reaching zero near midnight followed by an increasing rate that peaked at 03:00 h. Changes in Omega arag and pH lagged behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet was the primary driver of calcification. Daytime coral metabolism rapidly removes dissolved inorganic carbon (DIC) from the bulk seawater and photosynthesis provides the energy that drives Gnet while increasing the bulk water pH. These relationships result in a correlation between Gnet and Omega arag, with Omega arag as the dependent variable. High rates of H+ efflux continued for several hours following mid-day peak Gnet suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Hypothesis. DIC flux (uptake) followed Pnet and Gnet and dropped off rapidly following peak Pnet and peak Gnet indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Over a 24 h period the plot of total alkalinity (AT) versus DIC as well as the plot of Gnet versus Omega arag revealed a circular hysteresis pattern over the diel cycle in the coral and coral-algae mesocosms, but not the macroalgae mesocosm. Presence of macroalgae did not change Gnet of the corals, but altered the relationship between Omega arag and Gnet. Predictive models of how future global changes will effect coral growth that are based on oceanic Omega arag must include the influence of future localized Pnet on Gnet and changes in rate of reef carbonate dissolution. The correlation between Omega arag and Gnet over the diel cycle is simply the response of the CO2-carbonate system to increased pH as photosynthesis shifts the equilibria and increases the [CO3]2- relative to the other DIC components of [HCO3]- and [CO2]. Therefore Omega arag closely tracked pH as an effect of changes in Pnet, which also drove changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si:C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efforts to evaluate the response of coral larvae to global climate change (GCC) and ocean acidification (OA) typically employ short experiments of fixed length, yet it is unknown how the response is affected by exposure duration. In this study, we exposed larvae from the brooding coral Pocillopora damicornis to contrasts of temperature (24.00 °C [ambient] versus 30.49 °C) and pCO2 (49.4 Pa versus 86.2 Pa) for varying periods (1-5 days) to test the hypothesis that exposure duration had no effect on larval response as assessed by protein content, respiration, Symbiodinium density, and survivorship; exposure times were ecologically relevant compared to representative pelagic larval durations (PLD) for corals. Larvae differed among days for all response variables, and the effects of the treatment were relatively consistent regardless of exposure duration for three of the four response variables. Protein content and Symbiodinium density were unaffected by temperature and pCO2, but respiration increased with temperature (but not pCO2) with the effect intensifying as incubations lengthened. Survival, however, differed significantly among treatments at the end of the study, and by the 5th day, 78% of the larvae were alive and swimming under ambient temperature and ambient pCO2, but only 55-59% were alive in the other treatments. These results demonstrate that the physiological effects of temperature and pCO2 on coral larvae can reliably be detected within days, but effects on survival require > or = 5 days to detect. The detection of time-dependent effects on larval survivorship suggests that the influence of GCC and OA will be stronger for corals having long PLDs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We tested the effects of pCO2 on Seriatopora caliendrum recruits over the first 5.3 d of post-settlement existence. In March 2011, 11-20 larvae were settled in glass vials (3.2 mL) and incubated at 24.0 °C and ~250 µmol quanta/m**2/s while supplied with seawater (at 1.4 mL/s) equilibrated with 51.6 Pa pCO2 (ambient) or 86.4 Pa pCO2. At 51.6 Pa pCO2, mean respiration 7 h post-settlement was 0.056 ± 0.007 nmol O2/recruit/min, but rose quickly to 0.095 ± 0.007 nmol O2/recruit/min at 3.3 d post-settlement, and thereafter declined to 0.075 ± 0.002 nmol O2/recruit/min at 5.3 d post-settlement (all ± SE). Elevated pCO2 depressed respiration of recruits by 19% after 3.3 d and 12% overall (i.e., integrated over 5.3 d), and while it had no effect on corallite area, elevated pCO2 was associated with weaker adhesion to the glass settlement surface and lower protein biomass. The unique costs of settlement and metamorphosis for S. caliendrum over 5.3 d are estimated to be 257 mJ/recruit at 51.6 Pa pCO2, which is less than the energy content of the larvae and recruits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of carbonate ion concentration ([CO3]) on calcification rates estimated from shell size and weight was investigated in the planktonic foraminifera Orbulina universa and Globigerinoides sacculifer. Experiments on G. sacculifer were conducted under two irradiance levels (35 and 335 µmol photons m-2 s-1). Calcification was ca. 30% lower under low light than under high light, irrespective of the [CO3]. Both O. universa and G. sacculifer exhibited reduced final shell weight and calcification rate under low [CO3]. For the [CO3] expected at the end of the century, the calcification rates of these two species are projected to be 6 to 13% lower than the present conditions, while the final shell weights are reduced by 20 to 27% for O. universa and by 4 to 6% for G. sacculifer. These results indicate that ocean acidification would impact on calcite production by foraminifera and may decrease the calcite flux contribution from these organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 µatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased CO2 and associated acidification in seawater, known as ocean acidification, decreases calcification of most marine calcifying organisms. However, there is little information available on how marine macroalgae would respond to the chemical changes caused by seawater acidification. We hypothesized that down-regulation of bicarbonate acquisition by algae under increased acidity and CO2 levels would lower the threshold above which photosynthetically active radiation (PAR) becomes excessive. Juveniles of Ulva prolifera derived from zoospores were grown at ambient (390 µatm) and elevated (1000 µatm) CO2 concentrations for 80 days before the hypothesis was tested. Here, the CO2-induced seawater acidification increased the quantum yield under low levels of light, but induced higher nonphotochemical quenching under high light. At the same time, the PAR level at which photosynthesis became saturated was decreased and the photosynthetic affinity for CO2 or inorganic carbon decreased in the high-CO2 grown plants. These findings indicated that ocean acidification, as an environmental stressor, can reduce the threshold above which PAR becomes excessive.