628 resultados para Jamin shearing interferometer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum mechanics, optics and indeed any wave theory exhibits the phenomenon of interference. In this thesis we present two problems investigating interference due to indistinguishable alternatives and a mostly unrelated investigation into the free space propagation speed of light pulses in particular spatial modes. In chapter 1 we introduce the basic properties of the electromagnetic field needed for the subsequent chapters. In chapter 2 we review the properties of interference using the beam splitter and the Mach-Zehnder interferometer. In particular we review what happens when one of the paths of the interferometer is marked in some way so that the particle having traversed it contains information as to which path it went down (to be followed up in chapter 3) and we review Hong-Ou-Mandel interference at a beam splitter (to be followed up in chapter 5). In chapter 3 we present the first of the interference problems. This consists of a nested Mach-Zehnder interferometer in which each of the free space propagation segments are weakly marked by mirrors vibrating at different frequencies [1]. The original experiment drew the conclusions that the photons followed disconnected paths. We partition the description of the light in the interferometer according to the number of paths it contains which-way information about and reinterpret the results reported in [1] in terms of the interference of paths spatially connected from source to detector. In chapter 4 we briefly review optical angular momentum, entanglement and spontaneous parametric down conversion. These concepts feed into chapter 5 in which we present the second of the interference problems namely Hong-Ou-Mandel interference with particles possessing two degrees of freedom. We analyse the problem in terms of exchange symmetry for both boson and fermion pairs and show that the particle statistics at a beam splitter can be controlled for suitably chosen states. We propose an experimental test of these ideas using orbital angular momentum entangled photons. In chapter 6 we look at the effect that the transverse spatial structure of the mode that a pulse of light is excited in has on its group velocity. We show that the resulting group velocity is slower than the speed of light in vacuum for plane waves and that this reduction in the group velocity is related to the spread in the wave vectors required to create the transverse spatial structure. We present experimental results of the measurement of this slowing down using Hong-Ou-Mandel interference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistically stationary and homogeneous shear turbulence (SS-HST) is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, long-term simulations of HST are “minimal” in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx ≳ 2Lz, Ly ≳ Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx ≳ 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wall-bounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ∼20S−1, and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most exciting discoveries in astrophysics of the last last decade is of the sheer diversity of planetary systems. These include "hot Jupiters", giant planets so close to their host stars that they orbit once every few days; "Super-Earths", planets with sizes intermediate to those of Earth and Neptune, of which no analogs exist in our own solar system; multi-planet systems with planets smaller than Mars to larger than Jupiter; planets orbiting binary stars; free-floating planets flying through the emptiness of space without any star; even planets orbiting pulsars. Despite these remarkable discoveries, the field is still young, and there are many areas about which precious little is known. In particular, we don't know the planets orbiting Sun-like stars nearest to our own solar system, and we know very little about the compositions of extrasolar planets. This thesis provides developments in those directions, through two instrumentation projects.

The first chapter of this thesis concerns detecting planets in the Solar neighborhood using precision stellar radial velocities, also known as the Doppler technique. We present an analysis determining the most efficient way to detect planets considering factors such as spectral type, wavelengths of observation, spectrograph resolution, observing time, and instrumental sensitivity. We show that G and K dwarfs observed at 400-600 nm are the best targets for surveys complete down to a given planet mass and out to a specified orbital period. Overall we find that M dwarfs observed at 700-800 nm are the best targets for habitable-zone planets, particularly when including the effects of systematic noise floors caused by instrumental imperfections. Somewhat surprisingly, we demonstrate that a modestly sized observatory, with a dedicated observing program, is up to the task of discovering such planets.

We present just such an observatory in the second chapter, called the "MINiature Exoplanet Radial Velocity Array," or MINERVA. We describe the design, which uses a novel multi-aperture approach to increase stability and performance through lower system etendue, as well as keeping costs and time to deployment down. We present calculations of the expected planet yield, and data showing the system performance from our testing and development of the system at Caltech's campus. We also present the motivation, design, and performance of a fiber coupling system for the array, critical for efficiently and reliably bringing light from the telescopes to the spectrograph. We finish by presenting the current status of MINERVA, operational at Mt. Hopkins observatory in Arizona.

The second part of this thesis concerns a very different method of planet detection, direct imaging, which involves discovery and characterization of planets by collecting and analyzing their light. Directly analyzing planetary light is the most promising way to study their atmospheres, formation histories, and compositions. Direct imaging is extremely challenging, as it requires a high performance adaptive optics system to unblur the point-spread function of the parent star through the atmosphere, a coronagraph to suppress stellar diffraction, and image post-processing to remove non-common path "speckle" aberrations that can overwhelm any planetary companions.

To this end, we present the "Stellar Double Coronagraph," or SDC, a flexible coronagraphic platform for use with the 200" Hale telescope. It has two focal and pupil planes, allowing for a number of different observing modes, including multiple vortex phase masks in series for improved contrast and inner working angle behind the obscured aperture of the telescope. We present the motivation, design, performance, and data reduction pipeline of the instrument. In the following chapter, we present some early science results, including the first image of a companion to the star delta Andromeda, which had been previously hypothesized but never seen.

A further chapter presents a wavefront control code developed for the instrument, using the technique of "speckle nulling," which can remove optical aberrations from the system using the deformable mirror of the adaptive optics system. This code allows for improved contrast and inner working angles, and was written in a modular style so as to be portable to other high contrast imaging platforms. We present its performance on optical, near-infrared, and thermal infrared instruments on the Palomar and Keck telescopes, showing how it can improve contrasts by a factor of a few in less than ten iterations.

One of the large challenges in direct imaging is sensing and correcting the electric field in the focal plane to remove scattered light that can be much brighter than any planets. In the last chapter, we present a new method of focal-plane wavefront sensing, combining a coronagraph with a simple phase-shifting interferometer. We present its design and implementation on the Stellar Double Coronagraph, demonstrating its ability to create regions of high contrast by measuring and correcting for optical aberrations in the focal plane. Finally, we derive how it is possible to use the same hardware to distinguish companions from speckle errors using the principles of optical coherence. We present results observing the brown dwarf HD 49197b, demonstrating the ability to detect it despite it being buried in the speckle noise floor. We believe this is the first detection of a substellar companion using the coherence properties of light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. Results: Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Cette juxtaposition de matériaux solides -blocs, pierres ou briques,...- liés ou non entre eux que nous appelons maçonnerie ne se comporte pas très bien vis-à-vis des forces latérales, surtout si elle n’a pas été réalisée suivant les normes parasismiques ou de façon adéquate. Cette vulnérabilité (glissement, cisaillement, déchirure en flexion, ou tout autre) vient souvent du fait même de ce processus d’empilement, des problèmes d’interaction avec le reste de la structure et aussi à cause des caractéristiques mécaniques peu fiables de certains éléments utilisés. Malgré cette défaillance structurale, la maçonnerie est encore utilisée aujourd’hui grâce à son côté traditionnel, sa facilité de mise en œuvre et son coût d’utilisation peu élevé. Depuis quelques années, la maçonnerie s’est enrichie de documents qui ont été publiés par divers chercheurs dans le but d’une meilleure compréhension des caractéristiques mécaniques des éléments et aussi, et surtout, des mécanismes de rupture des murs de maçonnerie pour une meilleure réponse face aux sollicitations sismiques. Beaucoup de programmes expérimentaux ont alors été effectués et tant d’autres sont encore nécessaires. Et c’est dans ce contexte que cette recherche a été conduite. Elle présentera, entre autres, le comportement sous charges latérales d’un mur en maçonnerie armée entièrement rempli de coulis. Ce projet de recherche fait partie d’un programme plus large visant à une meilleure connaissance du comportement sismique de la maçonnerie pour une amélioration des techniques de construction et de réparation des ouvrages en maçonnerie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Cette étude examine l'impact de la taille et de la gradation de particules sur les corrélations théoriques et empiriques existantes les plus connues entre la résistance au cisaillement et le comportement dilatatant des matériaux granulaires en condition de déformation plane et en compression triaxiale drainée. À cette fin, 276 tests de cisaillements symétriques directs et 35 tests de compressions triaxiales drainées ont été menés sur des échantillons composés de billes de basalte (particules rondes), et de sables constitués de particules angulaires (sable de Péribonka et sable d'Eastmain) sur une échelle de 63 µm à 2000 µm afin d'évaluer leur résistance au cisaillement et leur comportement de dilatance sur une vaste échelle de pressions normales et de densités relatives initiales. Premièrement, la fiabilité et l'applicabilité des limites de mesure à l’aide de tests physiques de cisaillements symétriques directs dans l'interprétation de la résistance au cisaillement frictionnel en déformation plane des matériaux granulaires ont été discutées et confirmées par l'usage du code informatique DEM, SiGran. L'accent a été particulièrement mis sur la validation du modèle DEM au moyen de comparaison des résultats des simulations DEM avec leurs équivalents physiques à une échelle macro. Les résultats virtuels DSA sont abordés du point de vue de la coaxialité entre les principales tensions et les principales directions des paliers de pression ainsi que de la déviation de la direction d'extension nulle à partir de la direction horizontale. Les résultats numériques fournissent également des données quantitatives sur les différentes formes d'énergie consommées durant le cisaillement confirmées par d'autres résultats physiques et numériques publiés. Sur la base des postulats précédents, un examen minutieux des résultats des essais de cisaillements directs et de données issues de la littérature a été accompli afin d'évaluer la fiabilité des formules empiriques bien connues de Bolton et Collins et al. avec leurs constantes couramment employées en condition de déformation plane. L'étude montre qu'une application des relations empiriques de force-dilatation de cisaillement avec les constantes proposées par Bolton (1986) et Collins et al. (1992) aux sables ayant une distribution de taille de particules différente peut conduire à surestimer leurs valeurs en terme de force de cisaillement. Dans cette étude, les coefficients des équations de Bolton et Collins et al. ont donc été ajustée afin de prendre en compte les caractéristiques des particules, en particulier le diamètre médian, D50. De manière analogue, les effets microstructuraux imposés par la géométrie interne des particules (par exemple la taille, la forme et la gradation des particules) sur la relation tension-dilatation très connue, celle de Rowe (1962), et son ajustement empirique en condition triaxiale drainée ont été examinés dans cette étude. Une comparaison des prédictions des formules proposées avec les données de force de cisaillement issues de la littérature fournit de nombreuses preuves en faveur des contraintes mises en place au sein des relations existantes de force-dilatation de cisaillement en condition de déformation plane et triaxiale. Ces comparaisons prouvent également que la prise en compte de la taille des grains conduit à des résultats plus tangibles que lorsque la taille de la particule n'est pas considérée. Les formules de force-dilatation ajustées peuvent se révéler avantageuses pour évaluer indépendamment la cohérence des forces de cisaillement déterminées expérimentalement et pour introduire des lois d’écoulement plus précises dans les analyses géotechniques analytiques et numériques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study’s main goal was to evaluate the thermoregulatory responses velocity through the variation of rectal temperature (RT), related to the thermolytic pathways, respiratory rate (RR) and sweating rate (SR) among different sheep breeds. Ninety female sheep, eighteen of each breed: Santa Ines and Morada Nova (Brazilian hair breeds), Texel, Suffolk and Ile de France (wool breeds) were challenged during three non-consecutive summer days (22◦42′S, 47◦18′W, and 570m of altitude, maximum air temperature of 33.5◦C, average relative humidity of 52±6.9%). The physiological variables were registered at 0800h (T1), 1300 h (T2: after 2 h of shade rest), 1400 h (T3) (after one hour of sun exposure) and in the shade at 1415 h (T4), 1430 h (T5), 1445 h (T6) and 1500 h (T7) and a thermotolerance index (TCI) was calculated as (10-(T7 to T4)-T1). The statistical analysis was performed by a mathematical model including the fixed effects of breeds and time frames, and the interaction between these effects, besides random effects such as animal and day. The Santa Ines breed presented the lowest RT after sun exposure (39.3 ± 0.12 ◦ C; P < 0.05) and it was the only one to recover morning RT 60 min after heat stress (38.7 and 38.9 for 1300 h and 1500 h; P > 0.05). Hair breeds presented RR lower (P < 0.05) than wool breeds. Although thick wool or hair thickness differs among and within hair and wool breeds (P < 0.05), SR did not differ among breeds and time (227.7 ± 16.44 g m−2 h−1 ; P > 0.05). The thermotolerance index did not differ among breeds, but it showed similar response (P > 0.05) 45 min or 1 h of shade after sun exposure. One week post shearing is not enough to wool breeds present to show thermotolerance similar to hair breeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial con- tinental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to ex- plain the processes in place during the transition froman extension-dominated state (D2) to a compression-dom- inated one (D3).Wereveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facil- itating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intru- sion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel re- gion, the D3 Tamames-Marofa-Sátão synform. Newdating of syn-orogenic granitoids (SHRIMP U\\Pb zircon dat- ing) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331–311 Ma, with maximum tectonomagmatic activity at ca. 321–317 Ma. The capture and apparent cessation of movement of the Pinhel shear zone occurred at ca. 317– 311 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accurate representation of the Earth Radiation Budget by General Circulation Models (GCMs) is a fundamental requirement to provide reliable historical and future climate simulations. In this study, we found reasonable agreement between the integrated energy fluxes at the top of the atmosphere simulated by 34 state-of-the-art climate models and the observations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a global scale, but large regional biases have been detected throughout the globe. Furthermore, we highlighted that a good agreement between simulated and observed integrated Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this and to understand the causes of these biases, we compared the observed Earth emission spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric fields provided by the EC-Earth GCM. To this purpose, the fast σ-IASI radiative transfer model was used, after its validation and implementation in EC-Earth. From the comparison between observed and simulated spectral radiances, a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere, as well as a dry bias of the water vapor concentration in the upper troposphere, have been identified in the EC-Earth climate model. The analysis has been performed in clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose impact on the radiation represents the greatest source of uncertainty in climate models, has also been proven. Finally, the analysis of simulated and observed OLR trends indicated good agreement and provided detailed information on the spectral fingerprints of the evolution of the main climate variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The perquisites of organic semiconductors (OSCs) in the field of organic electronics have attracted much attention due to the advantages like cost-effectiveness, solution processibility, etc. A key property in OSCs is charge carrier mobility, which depends on molecular packing, as even the slightest changes in the packing of OSC can significantly impact the mobility. Organic molecules are constructed by weak interactions, which makes the OSCs prone to adopt multiple packing arrangements, thus giving rise to polymorphism. Therefore, polymorph screening in bulk and thin films is crucial for material development. This thesis aims to present a systematic study of polymorphism of [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives functionalized with different side chains. The role of peripheral side chains has been studied since they can promote different packing arrangements. The bulk polymorph screening of OSCs was approached with conventional solution mediated recrystallization experiments like evaporation, slurry maturation, anti-solvent precipitation, etc. Each of the polymorphs were inspected for their relative stability and the kinetics of transformation was evaluated. Polymorphism in thin films was also investigated for selected OSCs. Non-equilibrium methods like, thermal gradient and solution shearing were employed to examine the nucleation, crystal growth and morphology in controlled crystallization conditions. After careful analysis of crystal phases in bulk and thin films, OFETs have been fabricated by optimizing the manufacturing conditions and the hole mobility values were extracted. The charge transport property of the OSCs tested for OFETs was supported by the ionization potential and transfer integrals calculation. An attempt to correlate the solid-state structure to electronic properties was carried out. For some of the molecules, mechanical properties have been also investigated, as the response to mechanical stress is highly susceptible to packing arrangements and the intermolecular interaction energy contributions. Additionally, collaborative research was carried out by solving and analysing the crystal structures of six oligorylene molecules.