994 resultados para Iron-sulfur Cluster
Resumo:
En aquest article es presenten breument els diferents capítols d’un treball interdisciplinari per tal d’entendre el context de prohibició de la mineria de ferro a Goa a finals del 2012 i proporcionar la informació necessària per tal d’orientar i gestionar la presa de decisions sobre l’activitat minera en un futur. Els sis primers capítols consisteixen en l’estudi del medi abiòtic, medi biòtic, fluxos de materials, aspectes socials, aspectes econòmics i finalment aspectes polítics. En canvi, en els dos últims capítols s'avaluen i es gestionen els impactes ambientals de la mineria mitjançant, per una banda, una anàlisi DPSIR i, d'altra banda, es proposen tres escenaris per integrar les diferents variables i fomentar la participació en la presa de decisions. S’ha dut a terme una extensa recerca mitjançant la recopilació de dades, entrevistes i visites a les zones d’estudi d’interès per tal d’entendre el conflicte de la mineria a Goa.
Resumo:
Malnutrition may result in a phosphate-deficient state owing to a chronically insufficient phosphate intake. Concomitant iron deficiency is common and often supplemented by the intravenous route. It is not widely recognized that some parenteral iron formulations can induce hypophosphatemia. Herein we report a case of a severe and symptomatic hypophosphatemia (0.18 mM, normal range 0.8-1.4 mM) associated with an inappropriately reduced tubular reabsorption of phosphate (33%, norm >95%) in a malnourished patient with anorexia/bulimia who received 2 × 500 mg iron carboxymaltose (FCM) intravenously. Despite intravenous and oral phosphate supplements, it required 2 months to achieve a normal serum phosphate level. Our case demonstrates that in a chronically malnourished and phosphate-deficient state intravenous FCM could potentially be dangerous. If this form of iron application cannot be avoided, phosphate supplementation before and after iron infusion as well as close monitoring of phosphate levels are needed.
Resumo:
OBJECTIVE: To test the effect of a multidimensional lifestyle intervention on aerobic fitness and adiposity in predominantly migrant preschool children. DESIGN: Cluster randomised controlled single blinded trial (Ballabeina study) over one school year; randomisation was performed after stratification for linguistic region. SETTING: 40 preschool classes in areas with a high migrant population in the German and French speaking regions of Switzerland. PARTICIPANTS: 652 of the 727 preschool children had informed consent and were present for baseline measures (mean age 5.1 years (SD 0.7), 72% migrants of multicultural origins). No children withdrew, but 26 moved away. INTERVENTION: The multidimensional culturally tailored lifestyle intervention included a physical activity programme, lessons on nutrition, media use (use of television and computers), and sleep and adaptation of the built environment of the preschool class. It lasted from August 2008 to June 2009. MAIN OUTCOME MEASURES: Primary outcomes were aerobic fitness (20 m shuttle run test) and body mass index (BMI). Secondary outcomes included motor agility, balance, percentage body fat, waist circumference, physical activity, eating habits, media use, sleep, psychological health, and cognitive abilities. RESULTS: Compared with controls, children in the intervention group had an increase in aerobic fitness at the end of the intervention (adjusted mean difference: 0.32 stages (95% confidence interval 0.07 to 0.57; P=0.01) but no difference in BMI (-0.07 kg/m(2), -0.19 to 0.06; P=0.31). Relative to controls, children in the intervention group had beneficial effects in motor agility (-0.54 s, -0.90 to -0.17; P=0.004), percentage body fat (-1.1%, -2.0 to -0.2; P=0.02), and waist circumference (-1.0 cm, -1.6 to -0.4; P=0.001). There were also significant benefits in the intervention group in reported physical activity, media use, and eating habits, but not in the remaining secondary outcomes. CONCLUSIONS: A multidimensional intervention increased aerobic fitness and reduced body fat but not BMI in predominantly migrant preschool children.
Resumo:
We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.
Resumo:
The objective of this work was to study possible mechanisms involved in root-induced changes of rhizosphere physicochemical properties of rice genotypes, under anoxia and low supply of Zn and Fe. Two rice genotypes, including an upland and a lowland ones, were grown in hydroponic medium under adequate and low supply of Zn and Fe, with or without aeration. Anoxia increased shoot dry weight, root length and uptake of Zn and Fe in lowland Amol genotype, but reduced these parameters in upland Gasrol-Dashti genotype. The amount of oxygen released by roots was statistically higher in 'Amol'. The highest acidification potential of roots was observed in the lowland genotype under low supply of Zn, and in the upland genotype under Fe starvation. The highest oxalate (only organic acid detected) exudation from roots was observed in Zn and Fe deficient Gasrol-Dashti genotype. Zinc deficiency caused reduction of alcohol dehydrogenase and stimulation of lactate dehydrogenase activity, particularly in shoot. The ability to induce changes in the rhizosphere properties has a great contribution for the adaptation of both lowland and upland rice genotypes to specific soil conditions.
Resumo:
Pb-Zn-Ag vein and listwaenite types of mineralization in Crnac deposit, Western Vardar zone, were deposited within several stages: (i) the pre-ore stage comprises pyrite, arsenopyrite, pyrrhotite, quartz, kaolinite and is followed by magnetite-pyrite; (ii) the syn-ore stage is composed of galena, sphalerite, tetrahedrite and stefanite; and (iii) the post-ore stage is composed of carbonates, pyrite, arsenopyrite and minor galena. The vein type mineralization is hosted by Jurassic amphibolites and veins terminate within overlying serpentinites. Mineralized listwaenites are developed along the serpentinite-amphibolite interface. The reserves are estimated to 1.7 Mt of ore containing in average 7.6% lead, 2.9% zinc, and 102 g/t silver. Sulfides from the pre- and syn-mineralization assemblage of the vein- and listwaenite-types of mineralization from the Crnac Pb-Zn-Ag deposit have been analyzed using microprobe, crush-leachates and sulfur isotopes. The pre-ore assemblage precipitated under high sulfur fugacities (f(S(2)) = 10(-8)-10(-6) bar) from temperatures ranging between 350 degrees C and 380 degrees C. Most likely water-rock reactions, boiling and/or increase of pH caused an increase of delta(34)S of pyrite toward upper levels within the deposit. The decomposition of pre-ore pyrrhotite to a pyrite-magnetite mixture occurred at a fugacity of sulfur from f(S(2)) = 8.7 x 10(-10) to 9.6 x 10(-9) bar and fugacity of oxygen from f(O(2)) = 2.4 x 10(-30) to 3.1 x 10(-28) bars, indicating a contribution of an oxidizing fluid, i.e. meteoric water during pre-ore stages of hydrothermal activity. The crystallization temperatures obtained by the sphalerite-galena isotope geothermometer range from 230 to 310 degrees C. The delta(34)S values of pre- and syn-ore sulfides (pyrite, galena, sphalerite, delta(34)S = 0.3-5.9 parts per thousand) point to magmatic sulfur. Values of delta(34)S of galena and sphalerite are decreasing upwards due to precipitation of early formed sulfide minerals. Post-ore assemblage precipitated at temperature below 190 degrees C. Based on data presented above, we assume two fluid sources: (i) a magmatic source, supported by sulfur isotopic compositions within pre- and syn-ore minerals and a high mol% of fluorine found within pre- and syn-ore leachates, and (ii) a meteoric source, deduced by coincident pyrite-magnetite intergrowth, sulfur isotopic trends within syn-ore minerals and decrease of crystallization temperatures from the pre-ore stage (380-350 degrees C), towards the syn-ore (310-215 degrees C) and post-ore stages (<190 degrees C). Post-ore fluids are Na-Ca-Mg-K-Li chlorine rich and were modified via water-rock reactions. Simple mineral assemblage and sphalerite composition range from 1.5 to 10.1 mol% of FeS catalog Crnac to a group of intermediate sulfidation epithermal deposit. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.
Resumo:
The Mississippi Valley-type (MVT) Pb-Zn ore district at Mezica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mezica covers an area of 64 km(2) with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have delta(34)S values in the range of -24.7 to -1.5% VCDT (-13.5 +/- 5.0%) and -24.7 to -1.4% (-10.7 +/- 5.9%), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide delta(34)S values are negative within a broad range, with delta(34)S(pyrite) < delta(34)S(sphalerite) < delta(34)S(galena) for both conformable and discordant orebodies, indicating isotopically heterogeneous H(2)S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of (34)S-enriched H(2)S to the ore fluid. The variations of delta(34)S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative delta(34)S values with time along the different sphalerite generations are consistent with mixing of different H(2)S sources, with a decreasing contribution of H(2)S from regional TSR, and an increase from a local H(2)S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (-11.9 to -1.7%; -7.0 +/- 2.7%, n=12) tends to be depleted in (34)S compared with conformable ore (-24.7 to -2.8%, -11.7 +/- 6.2%, n=39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide delta(34)S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H(2)S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H(2)S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.
Resumo:
X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times
Resumo:
X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times
Resumo:
The high-affinity siderophore salicylate is an intermediate in the biosynthetic pathway of pyochelin, another siderophore and chelator of transition metal ions, in Pseudomonas aeruginosa. The 2.5-kb region upstream of the salicylate biosynthetic genes pchBA was sequenced and found to contain two additional, contiguous genes, pchD and pchC, having the same orientation. The deduced amino acid sequence of the 60-kDa PchD protein was similar to those of the EntE protein (2,3-dihydroxybenzoate-AMP ligase) of Escherichia coli and other adenylate-forming enzymes, suggesting that salicylate might be adenylated at the carboxyl group by PchD. The 28-kDa PchC protein showed similarities to thioesterases of prokaryotic and eukaryotic origin and might participate in the release of the product(s) formed from activated salicylate. One potential product, dihydroaeruginoate (Dha), was identified in culture supernatants of iron-limited P. aeruginosa cells. The antifungal antibiotic Dha is thought to arise from the reaction of salicylate with cysteine, followed by cyclization of cysteine. Inactivation of the chromosomal pchD gene by insertion of the transcription and translation stop element omega Sm/Sp abolished the production of Dha and pyochelin, implying that PchD-mediated activation of salicylate may be a common first step in the synthesis of both metabolites. Furthermore, the pchD::omega Sm/Sp mutation had a strong polar effect on the expression of the pchBA genes, i.e., on salicylate synthesis, indicating that the pchDCBA genes constitute a transcriptional unit. A full-length pchDCBA transcript of ca. 4.4 kb could be detected in iron-deprived, growing cells of P. aeruginosa. Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis. This promoter arrangement allows tight iron-mediated repression of the pchDCBA operon.
Resumo:
The bacterial siderophore pyochelin is composed of salicylate and two cysteine-derived heterocycles, the second of which is modified by reduction and N-methylation during biosynthesis. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation, whereas the second cysteine remains in its L-configuration. Stereochemistry is opposite in the Pseudomonas fluorescens siderophore enantio-pyochelin, in which the first ring originates from L-cysteine and the second ring from D-cysteine. Both siderophores promote growth of the producer organism during iron limitation and induce the expression of their biosynthesis genes by activating the transcriptional AraC-type regulator PchR. However, neither siderophore is functional as an iron carrier or as a transcriptional inducer in the other species, demonstrating that both processes are highly stereospecific. Stereospecificity of pyochelin/enantio-pyochelin-mediated iron uptake is ensured at two levels: (i) by the outer membrane siderophore receptors and (ii) by the cytosolic PchR regulators.