959 resultados para Ion beam analysis
Resumo:
During its lifetime in the core, the cladding of an Accelerator Driven Subcritical Reactor (ADSR) fuel pin is expected to experience variable stresses due to frequent interruptions in the accelerator proton beam. This paper investigates the thermal fatigue damage in the cladding due to repetitive and unplanned beam interruptions under certain operational conditions. Beam trip data was obtained for four operating high power proton accelerators, among which the Spallation Neutron Source (SNS) superconducting accelerator was selected for further analysis. 9Cr-1Mo-Nb-V (T91) steel was selected as the cladding material because of its proven compatibility with proposed ADSR design concepts. The neutronic, thermal and stress analyses were performed using the PTS-ADS, a code that has been specifically developed for studying the dynamic response to beam-induced transients in accelerator driven subcritical systems. The lifetime of the fuel cladding in the core was estimated for three levels of allowed pin power and specific operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Classic flutter analysis models an aerofoil as a two degree-of-freedom rigid body supported by linear and torsional springs, which represent the bending and torsional stiffness of the aerofoil section. In this classic flutter model, no energy transfer or dissipation can occur in the span-wise direction of the aerofoil section. However, as the aspect ratio of an aerofoil section increases, this span-wise energy transfer - in the form of travelling waves - becomes important to the overall system dynamics. This paper extends the classic flutter model to include travelling waves in the span-wise direction. Namely, wave dispersion and power flow analysis of an infinite, aerofoil-shaped beam, subject to bending, torsion, tension and a constant wind excitation, is used to investigate the overall system stability. Examples of potential applications for these high aspect ratio aerofoil sections include high-altitude balloon tethers, towed cables, offshore risers and mooring lines.
Resumo:
The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.
Resumo:
The diluted magnetic semiconductors (DMSs) were achieved by the ion implantation. Fe+ ions (250 keV) were implanted into n-type GaN at room temperature with doses ranging from 8 X 10(15) cm(-2) to 8 X 10(16) cm(-2) and subsequently rapidly annealed at 800 degrees C for 5 m in N-2 ambient. PIXE was employed to determine the Fe-implanted content. The magnetic property was measured by the Quantum Design MPMS SQUID magnetometer. No secondary phases or clusters are detected within the sensitivity of XRD. Apparent ferromagnetic hysteresis loops measured at 10 K were presented. The relationships between the Fe-implanted content and the ferromagnetic property are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Atomic force microscopy (AFM) measurements of nanometer-sized islands formed by 2 monolayers of InAs by molecular beam epitaxy have been carried out and the scan line of individual islands was extracted from raw AFM data for investigation. It is found that the base widths of nanometer-sized islands obtained by AFM are not reliable due to the finite size and shape of the contacting probe. A simple model is proposed to analyze the deviation of the measured value From the real value of the base width of InAs islands. (C) 1998 Elsevier Science B.V. All rights reserved.