817 resultados para Intrusion Detection, Computer Security, Misuse
Resumo:
This paper presents a study that was undertaken to examine human interaction with a pedagogical agent and the passive and active detection of such agents within a synchronous, online environment. A pedagogical agent is a software application which can provide a human like interaction using a natural language interface. These may be familiar from the smartphone interfaces such as ‘Siri’ or ‘Cortana’, or the virtual online assistants found on some websites, such as ‘Anna’ on the Ikea website. Pedagogical agents are characters on the computer screen with embodied life-like behaviours such as speech, emotions, locomotion, gestures, and movements of the head, the eye, or other parts of the body. The passive detection test is where participants are not primed to the potential presence of a pedagogical agent within the online environment. The active detection test is where participants are primed to the potential presence of a pedagogical agent. The purpose of the study was to examine how people passively detected pedagogical agents that were presenting themselves as humans in an online environment. In order to locate the pedagogical agent in a realistic higher education online environment, problem-based learning online was used. Problem-based learning online provides a focus for discussions and participation, without creating too much artificiality. The findings indicated that the ways in which students positioned the agent tended to influence the interaction between them. One of the key findings was that since the agent was focussed mainly on the pedagogical task this may have hampered interaction with the students, however some of its non-task dialogue did improve students' perceptions of the autonomous agents’ ability to interact with them. It is suggested that future studies explore the differences between the relationships and interactions of learner and pedagogical agent within authentic situations, in order to understand if students' interactions are different between real and virtual mentors in an online setting.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The FIREDASS (FIRE Detection And Suppression Simulation) project is concerned with the development of fine water mist systems as a possible replacement for the halon fire suppression system currently used in aircraft cargo holds. The project is funded by the European Commission, under the BRITE EURAM programme. The FIREDASS consortium is made up of a combination of Industrial, Academic, Research and Regulatory partners. As part of this programme of work, a computational model has been developed to help engineers optimise the design of the water mist suppression system. This computational model is based on Computational Fluid Dynamics (CFD) and is composed of the following components: fire model; mist model; two-phase radiation model; suppression model and detector/activation model. The fire model - developed by the University of Greenwich - uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation conducted by SINTEF. The mist model - developed by the University of Greenwich - is a Lagrangian particle tracking procedure that is fully coupled to both the gas phase and the radiation field. The radiation model - developed by the National Technical University of Athens - is described using a six-flux radiation model. The suppression model - developed by SINTEF and the University of Greenwich - is based on an extinguishment crietrion that relies on oxygen concentration and temperature. The detector/ activation model - developed by Cerberus - allows the configuration of many different detector and mist configurations to be tested within the computational model. These sub-models have been integrated by the University of Greenwich into the FIREDASS software package. The model has been validated using data from the SINTEF/GEC test campaigns and it has been found that the computational model gives good agreement with these experimental results. The best agreement is obtained at the ceiling which is where the detectors and misting nozzles would be located in a real system. In this paper the model is briefly described and some results from the validation of the fire and mist model are presented.
Resumo:
The human factor is often recognised as a major aspect of cyber-security research. Risk and situational perception are identified as key factors in the decision making process, often playing a lead role in the adoption of security mechanisms. However, risk awareness and perception have been poorly investigated in the field of eHealth wearables. Whilst end-users often have limited understanding of privacy and security of wearables, assessing the perceived risks and consequences will help shape the usability of future security mechanisms. This paper present a survey of the the risks and situational awareness in eHealth services. An analysis of the lack of security and privacy measures in connected health devices is described with recommendations to circumvent critical situations.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014.
Resumo:
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. Methods: An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). Results: JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Conclusion: Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified.
Resumo:
We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.
Resumo:
Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spectrum sensing and awareness represent main tasks of a CR, providing the possibility of exploiting the unused bands. In this thesis, we investigate the detection and classification of Long Term Evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are used in uplink LTE, with applications to cognitive radio. We explore the second-order cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the cyclic autocorrelation function to signal detection and classification (in other words, to spectrum sensing and awareness). The proposed detection and classification algorithms provide a very good performance under various channel conditions, with a short observation time and at low signal-to-noise ratios, with reduced complexity. The validity of the proposed algorithms is verified using signals generated and acquired by laboratory instrumentation, and the experimental results show a good match with computer simulation results.
Resumo:
The traditional process of filling the medicine trays and dispensing the medicines to the patients in the hospitals is manually done by reading the printed paper medicine chart. This process can be very strenuous and error-prone, given the number of sub-tasks involved in the entire workflow and the dynamic nature of the work environment. Therefore, efforts are being made to digitalise the medication dispensation process by introducing a mobile application called Smart Dosing application. The introduction of the Smart Dosing application into hospital workflow raises security concerns and calls for security requirement analysis. This thesis is written as a part of the smart medication management project at Embedded Systems Laboratory, A° bo Akademi University. The project aims at digitising the medicine dispensation process by integrating information from various health systems, and making them available through the Smart Dosing application. This application is intended to be used on a tablet computer which will be incorporated on the medicine tray. The smart medication management system include the medicine tray, the tablet device, and the medicine cups with the cup holders. Introducing the Smart Dosing application should not interfere with the existing process carried out by the nurses, and it should result in minimum modifications to the tray design and the workflow. The re-designing of the tray would include integrating the device running the application into the tray in a manner that the users find it convenient and make less errors while using it. The main objective of this thesis is to enhance the security of the hospital medicine dispensation process by ensuring the security of the Smart Dosing application at various levels. The methods used for writing this thesis was to analyse how the tray design, and the application user interface design can help prevent errors and what secure technology choices have to be made before starting the development of the next prototype of the Smart Dosing application. The thesis first understands the context of the use of the application, the end-users and their needs, and the errors made in everyday medication dispensation workflow by continuous discussions with the nursing researchers. The thesis then gains insight to the vulnerabilities, threats and risks of using mobile application in hospital medication dispensation process. The resulting list of security requirements was made by analysing the previously built prototype of the Smart Dosing application, continuous interactive discussions with the nursing researchers, and an exhaustive stateof- the-art study on security risks of using mobile applications in hospital context. The thesis also uses Octave Allegro method to make the readers understand the likelihood and impact of threats, and what steps should be taken to prevent or fix them. The security requirements obtained, as a result, are a starting point for the developers of the next iteration of the prototype for the Smart Dosing application.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
There is a widespread perception among staff in Computer Science that plagiarism is a major problem particularly in the form of collusion in programming exercises. While departments often make use of electronic detection measures, the time consumed prosecuting plagiarism offences remains a problem. As a result departments continue to seek ways to reduce the amount of plagiarism and collusion that occurs. This paper reports the findings of a questionnaire based study which attempted to assess the students' attitudes to the issues involved in the hope that such an understanding might result in practical measures for minimizing the problem. The study revealed that while students did understand the definition of plagiarism in its most extreme cases they were often confused about less clear-cut situations. Changes in the previous experience of incoming students meeting modules originally designed on the assumption that students already had some programming background and were equipped for self-directed study would also appear to be a contributory factor in the extent of collusion in programming exercises.
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.