966 resultados para Intracellular Calcium
Resumo:
Waddlia chondrophila is an obligate intracellular bacterium considered as a potential agent of abortion in both humans and bovines. This member of the order Chlamydiales multiplies rapidly within human macrophages and induces lysis of the infected cells. To understand how this Chlamydia-like micro-organism invades and proliferates within host cells, we investigated its trafficking within monocyte-derived human macrophages. Vacuoles containing W. chondrophila acquired the early endosomal marker EEA1 during the first 30 min following uptake. However, the live W. chondrophila-containing vacuoles never co-localized with late endosome and lysosome markers. Instead of interacting with the endosomal pathway, W. chondrophila immediately co-localized with mitochondria and, shortly after, with endoplasmic reticulum- (ER-) resident proteins such as calnexin and protein disulfide isomerase. The acquisition of mitochondria and ER markers corresponds to the beginning of bacterial replication. It is noteworthy that mitochondrion recruitment to W. chondrophila inclusions is prevented only by simultaneous treatment with the microtubule and actin cytoskeleton-disrupting agents nocodazole and cytochalasin D. In addition, brefeldin A inhibits the replication of W. chondrophila, supporting a role for COPI-dependent trafficking in the biogenesis of the bacterial replicating vacuole. W. chondrophila probably survives within human macrophages by evading the endocytic pathway and by associating with mitochondria and the ER. The intracellular trafficking of W. chondrophila in human macrophages represents a novel route that differs strongly from that used by other members of the order Chlamydiales.
Resumo:
SUMMARY The human auditory cortex, located on the supratemporal plane of the temporal lobe, is divided in a primary auditory area and several non-primary areas surrounding it. These different areas show anatomical and functional differences. Many studies have focussed on auditory areas in non-human primates, using investigation techniques such as electrophysiological recordings, tracing of neural connections, or immunohistochemical and histochemical staining. Some of these studies have suggested parallel and hierarchical organization of the cortical auditory areas as well as subcortical auditory relays. In humans, only few studies have investigated these regions immunohistochemically, but activation and lesion studies speak in favour of parallel and hierarchical organization, very similar to that of non-human primates. Calcium-binding proteins and metabolic markers were used to investigate possible correlates of hierarchical and parallel organization in man. Calcium-binding proteins, parvalbumin, calretinin and calbindin, modulate the concentration of intracellular free calcium ions and were found in distinct subpopulations of GABAergic neurons in non-human primates species. In our study, their distribution showed several differences between auditory areas: the primary auditory area was darkly stained for both parvalbumin and calbindin, and their expression rapidly decreased while moving away from the primary area. This staining pattern suggests a hierarchical organization of the areas, in which the more darkly stained areas could correspond to an earlier integration level and the areas showing light staining may correspond to higher level integration areas. Parallel organization of primary and non-primary auditory areas was suggested by the complementarity, within a given area, between parvalbumin and calbindin expression across layers. To investigate the possible differences in the energetic metabolism of the cortical auditory areas, several metabolic markers were used: cytochrome oxidase and LDH1 were used as oxidative metabolism markers and LDH5 was used as glycolytic metabolism marker. The results obtained show a difference in the expression of enzymes involved in oxidative metabolism between areas. In the primary auditory area the oxidative metabolism markers were maximally expressed in layer IV. In contrast, higher order areas showed maximal staining in supragranular layers. The expression of LDH5 varied in patches, but did not differ between the different hierarchical auditory areas. The distribution of the two LDH enzymes isoforms also provides information about cellular aspects of metabolic organization, since neurons expressed the LDH1 isoform whereas astrocytes express primarily LDH5, but some astrocytes also contained the LDH1 isoform. This cellular distribution pattern supports the hypothesis of the existence of an astrocyte-neuron lactate shuttle, previously suggested in rodent studies, and in particular of lactate transfer from astrocytes, which produce lactate from the glucose obtained from the circulation, to neurons that use lactate as energy substrate. In conclusion, the hypothesis of parallel and hierarchical organization of the auditory areas can be supported by CaBPs, cytochrome oxidase and LDH1 distribution. Moreover, the two LDHs cellular distribution pattern support the hypothesis of an astrocyte-neuron lactate shuttle in human cortex.
Resumo:
In this study of the efficacy and safety of isradipine as first-line therapy in hypertension, 1,647 patients enrolled; 1,472 completed the 4-week placebo run-in period and began treatment with isradipine at 2.5 mg twice daily for 4 weeks. During placebo, 11% (n = 175) of the 1,647 patients withdrew because of normalization of blood pressure, side effects, noncompliance, violation of the study protocol, side effects from concomitant therapy, or other reasons. During isradipine therapy (n = 1,376), blood pressure decreased from 168 +/- 18/102 +/- 8 mm Hg at the end of the placebo period to 155 +/- 17/94 +/- 9 mm Hg after 2 weeks (p less than 0.001) and 151 +/- 16/92 +/- 9 mm Hg after 4 weeks (p less than 0.001). During active treatment, 6.4% (n = 94) were withdrawn because of flushing, headache, edema, palpitations, gastrointestinal side effects, skin rashes, or other side effects, and two patients because of lack of efficacy. The side effect score in the remaining patients worsened for flushing, remained unchanged for edema, but significantly improved for palpitations, fatigue, dizziness, headache, and nervousness. After 4 weeks, 60% of patients had diastolic blood pressures of less than or equal to 90 mm Hg. Thus, isradipine is effective and safe as first-line therapy in patients with primary hypertension as seen in general practice.
Resumo:
1.1 AbstractThe treatment of memory disorders and cognitive deficits in various forms of mental retardation may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. Different forms of memory have distinct molecular requirements.Short-term memory (STM) is thought to be mediated by covalent modifications of existing synaptic molecules, such as phosphorylation or dephosphorylation of enzymes, receptors or ion channels. In contrast, long-term memoiy (LTM) is thought to be mediated by growth of new synapses and restructuring of existing synapses. There is extensive evidence that changes in gene expression and de novo protein synthesis are key processes for LTM formation. In this context, the transcription factor CREB (cAMP-response element-binding protein) was shown to be crucial. Activation of CREB requires phosphorylation of a serine residue (Ser-133), and the subsequent recruitment of a coactivator called CREB-binding protein (CBP). Moreover, we have recently shown that another coactivator called CREB Regulated Transcription Coactivator 1 (CRTC1) functions as a calcium- and cAMP-sensitive coincidence detector in neurons, and is involved in hippocampal long-term synaptic plasticity. Given the importance of cAMP and calcium signaling for plasticity-related gene expression in neurons and in astrocytes, we sought to determine the respective involvement of the CREB coactivators CBP and CRTC1 in CREB-mediated transcription.We developed various strategies to selectively interfere with these CREB coactivators in mouse primary neurons and in astrocytes in vitro. However, despite several pieces of evidence implicating CBP and/or CRTC1 in the regulation of neuronal plasticity genes, we could not clearly determine the respective requirement of these coactivators for the activation of these genes. Nevertheless, we showed that calcineurin activity, which is important for CRTC1 nuclear translocation, is necessary for the expression of some CREB-regulated plasticity genes. We associated this phenomena to physiopathological conditions observed in Down's syndrome. In addition, we demonstrated that in astrocytes, noradrenaline stimulates CREB-target gene expression through β-adrenergic receptor activation, intracellular cAMP pathway activation, and CRTC-induced CREB transactivation.Defining the respective role of CREB and its coactivators CBP and CRTC1 in neuronal and astrocytic cultures in vitro sets the stage for future in vivo studies and for the possible development of new therapeutic strategies to improve the treatment of memoiy and cognitive disorders.1.2 RésuméUne meilleure connaissance des mécanismes moléculaires et cellulaires responsables de la formation de la mémoire pourrait grandement améliorer le traitement des troubles de la mémoire ainsi que des déficits cognitifs observés dans différentes formes de pathologies psychiatriques telles que le retard mental. Les différentes formes de mémoire dépendent de processus moléculaires différents.La mémoire à court terme (STM) semble prendre forme suite à des modifications covalentes de molécules synaptiques préexistantes, telles que la phosphorylation ou la déphosphorylation d'enzymes, de récepteurs ou de canaux ioniques. En revanche, la mémoire à long terme (LTM) semble être due à la génération de nouvelles synapses et à la restructuration des synapses existantes. De nombreuses études ont permis de démontrer que les changements dans l'expression des gènes et la synthèse de protéine de novo sont des processus clés pour la formation de la LTM. Dans ce contexte, le facteur de transcription CREB (cAMP-response element-binding protein) s'est avéré être un élément crucial. L'activation de CREB nécessite la phosphorylation d'un résidu sérine (Ser-133), et le recrutement d'un coactivateur nommé CBP (CREB binding protein). En outre, nous avons récemment démontré qu'un autre coactivateur de CREB nommé CRTC1 (CREB Regulated Transcription Coactivator 1) agit comme un détecteur de coïncidence de l'AMP cyclique (AMPc) et du calcium dans les neurones et qu'il est impliqué dans la formation de la plasticité synaptique à long terme dans l'hippocampe. Etant donné l'importance des voies de l'AMPc et du calcium dans l'expression des gènes impliqués dans la plasticité cérébrale, nous voulions déterminer le rôle respectif des coactivateurs de CREB, CBP et CRTC1.Nous avons développé diverses stratégies pour interférer de façon sélective avec les coactivateurs de CREB dans les neurones et dans les astrocytes chez la souris in vitro. Nos résultats indiquent que CBP et CRTC1 sont tous deux impliqués dans la transcription dépendante de CREB induite par l'AMPc et le calcium dans les neurones. Cependant, malgré plusieurs évidences impliquant CBP et/ou CRTC1 dans l'expression de gènes de plasticité neuronale, nous n'avons pas pu déterminer clairement leur nécessité respective pour l'activation de ces gènes. Toutefois, nous avons montré que l'activité de la calcineurine, dont dépend la translocation nucléaire de CRTC1, est nécessaire à l'expression de certains de ces gènes. Nous avons pu associer ce phénomène à une condition physiopathologique observée dans le syndrome de Down. Nous avons également montré que dans les astrocytes, la noradrénaline stimule l'expression de gènes cibles de CREB par une activation des récepteurs β- adrénergiques, l'activation de la voie de l'AMPc et la transactivation de CREB par les CRTCs.Définir le rôle respectif de CREB et de ses coactivateurs CBP et CRTC1 dans les neurones et dans les astrocytes in vitro permettra d'acquérir les connaissances nécessaires à de futures études in vivo et, à plus long terme d'éventuellement développer des stratégies thérapeutiques pour améliorer les traitements des troubles cognitifs.
Resumo:
Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts.
Resumo:
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Resumo:
This study was designed to assess whether the acute blood pressure response of an individual hypertensive patient to a calcium antagonist or an angiotensin converting enzyme (ACE) inhibitor is a good predictor of the long-term efficacy of these drug classes in this particular patient. The concept that good responses to ACE inhibitors and calcium antagonists may be mutually exclusive was also tested. Sixteen patients were included in a randomized crossover trial of enalapril, 20 mg daily, and diltiazem, 120 mg daily, for 6 weeks each. Blood pressure was measured by ambulatory blood pressure recording. During the washout phase, the acute effect of nifedipine, 10 mg p.o., and enalaprilat, 5 mg i.v., was evaluated. Nifedipine and enalaprilat reduced blood pressure equally well. The long-term blood pressure reduction induced by enalapril and diltiazem was similar. The acute blood pressure response to a given drug was not a good predictor of the result obtained with long-term therapy. No age dependency of the antihypertensive effect of either drug class was apparent. There was no evidence that a good response to one drug excluded a similarly good response to the other.
Resumo:
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.
Resumo:
Intracellular signaling in insect olfactory receptor neurons remains unclear, with both metabotropic and ionotropic components being discussed. Here, we investigated the role of heterotrimeric Go and Gi proteins using a combined behavioral, in vivo and in vitro approach. Specifically, we show that inhibiting Go in sensory neurons by pertussis toxin leads to behavioral deficits. We heterologously expressed the olfactory receptor dOr22a in human embryonic kidney cells (HEK293T). Stimulation with an odor led to calcium influx, which was amplified via calcium release from intracellular stores. Subsequent experiments indicated that the signaling was mediated by the Gβγ subunits of the heterotrimeric Go/i proteins. Finally, using in vivo calcium imaging, we show that Go and Gi contribute to odor responses both for the fast (phasic) as for the slow (tonic) response component. We propose a transduction cascade model involving several parallel processes, in which the metabotropic component is activated by Go and Gi , and uses Gβγ.
Resumo:
BACKGROUND: Associations of serum calcium levels with the metabolic syndrome and other novel cardio-metabolic risk factors not classically included in the metabolic syndrome, such as those involved in oxidative stress, are largely unexplored. We analyzed the association of albumin-corrected serum calcium levels with conventional and non-conventional cardio-metabolic risk factors in a general adult population. METHODOLOGY/PRINCIPAL FINDINGS: The CoLaus study is a population-based study including Caucasians from Lausanne, Switzerland. The metabolic syndrome was defined using the Adult Treatment Panel III criteria. Non-conventional cardio-metabolic risk factors considered included: fat mass, leptin, LDL particle size, apolipoprotein B, fasting insulin, adiponectin, ultrasensitive CRP, serum uric acid, homocysteine, and gamma-glutamyltransferase. We used adjusted standardized multivariable regression to compare the association of each cardio-metabolic risk factor with albumin-corrected serum calcium. We assessed associations of albumin-corrected serum calcium with the cumulative number of non-conventional cardio-metabolic risk factors. We analyzed 4,231 subjects aged 35 to 75 years. Corrected serum calcium increased with both the number of the metabolic syndrome components and the number of non-conventional cardio-metabolic risk factors, independently of the metabolic syndrome and BMI. Among conventional and non-conventional cardio-metabolic risk factors, the strongest positive associations were found for factors related to oxidative stress (uric acid, homocysteine and gamma-glutamyltransferase). Adiponectin had the strongest negative association with corrected serum calcium. CONCLUSIONS/SIGNIFICANCE: Serum calcium was associated with the metabolic syndrome and with non-conventional cardio-metabolic risk factors independently of the metabolic syndrome. Associations with uric acid, homocysteine and gamma-glutamyltransferase were the strongest. These novel findings suggest that serum calcium levels may be associated with cardiovascular risk via oxidative stress.
Resumo:
BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.
Resumo:
OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.