977 resultados para Interplanetary magnetic field


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary aim of the research activity presented in this PhD thesis was the development of an innovative hardware and software solution for creating a unique tool for kinematics and electromyographic analysis of the human body in an ecological setting. For this purpose, innovative algorithms have been proposed regarding different aspects of inertial and magnetic data elaboration: magnetometer calibration and magnetic field mapping (Chapter 2), data calibration (Chapter 3) and sensor-fusion algorithm. Topics that may conflict with the confidentiality agreement between University of Bologna and NCS Lab will not be covered in this thesis. After developing and testing the wireless platform, research activities were focused on its clinical validation. The first clinical study aimed to evaluate the intra and interobserver reproducibility in order to evaluate three-dimensional humero-scapulo-thoracic kinematics in an outpatient setting (Chapter 4). A second study aimed to evaluate the effect of Latissimus Dorsi Tendon Transfer on shoulder kinematics and Latissimus Dorsi activation in humerus intra - extra rotations (Chapter 5). Results from both clinical studies have demonstrated the ability of the developed platform to enter into daily clinical practice, providing useful information for patients' rehabilitation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wireless Power Transfer has become a promising technology to overcome the limits of wired solutions. Within this framework, the objective of this thesis is to study a WPT link at millimeter waves involving a particular type of antenna working in the radiative near-field, known as Bessel Beam (BB) Launcher. This antenna has been chosen for its peculiarity of generating a Bessel Beam which is by nature non-diffractive, showing good focusing and self-healing capabilities. In particular, a Bull-Eye Leaky Wave Antenna is designed and analysed, fed by a loop antenna and resonating at approximately 30 GHz. The structure excites a Hybrid-TE mode showing zeroth-order Bessel function over the z-component of the magnetic field. The same antenna is designed with two different dimensions, showing good wireless power transport properties. The link budgets obtained for different configurations are reported. With the aim of exploiting BB Launchers in wearable applications, a further analysis on the receiving part is conducted. For WPT wearable or implantable devices a reduced dimension of the receiver system must be considered. Therefore, an electrically large loop antenna in planar technology is modified, inserting phase shifters in order to increase the intensity of the magnetic field in its interrogation zone. This is fundamental when a BB Launcher is involved as transmitter. The loop antenna, in reception, shows a further miniaturization level since it is built such that its interrogation zone corresponds to the main beam dimension of transmitting BB Launcher. The link budget is evaluated with the new receiver showing comparable results with respect to previous configurations, showing an efficient WPT link for near-field focusing. Finally, a matching network and a full-wave rectifying circuit are attached to two of the different receiving systems considered. Further analysis will be carried out about the robustness of the square loop over biological tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, we perform a next-to-leading order calculation of the impact of primordial magnetic fields (PMF) into the evolution of scalar cosmological perturbations and the cosmic microwave background (CMB) anisotropy. Magnetic fields are everywhere in the Universe at all scales probed so far, but their origin is still under debate. The current standard picture is that they originate from the amplification of initial seed fields, which could have been generated as PMFs in the early Universe. The most robust way to test their presence and constrain their features is to study how they impact on key cosmological observables, in particular the CMB anisotropies. The standard way to model a PMF is to consider its contribution (quadratic in the magnetic field) at the same footing of first order perturbations, under the assumptions of ideal magneto-hydrodynamics and compensated initial conditions. In the perspectives of ever increasing precision of CMB anisotropies measurements and of possible uncounted non-linear effects, in this thesis we study effects which go beyond the standard assumptions. We study the impact of PMFs on cosmological perturbations and CMB anisotropies with adiabatic initial conditions, the effect of Alfvén waves on the speed of sound of perturbations and possible non-linear behavior of baryon overdensity for PMFs with a blue spectral index, by modifying and improving the publicly available Einstein-Boltzmann code SONG, which has been written in order to take into account all second-order contributions in cosmological perturbation theory. One of the objectives of this thesis is to set the basis to verify by an independent fully numerical analysis the possibility to affect recombination and the Hubble constant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A complex iridium oxide β-Li_{2}IrO_{3} crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J_{eff}=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O_{2}-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J_{eff}=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J_{eff}=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ_{CW}∼+40  K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J_{eff}=1/2 moments, is observed at T_{c}=38  K. With the application of magnetic field to the ordered state, a large moment of more than 0.35  μ_{B}/Ir is induced above 3 T, a substantially polarized J_{eff}=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li_{2}IrO_{3} is located in close proximity of a Kitaev spin liquid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of the scanning tunneling microscope (STM) for the investigation of Kondo adatoms on normal metallic surfaces reveals a Fano-Kondo behavior of the conductance as a function of the tip bias. In this work, the Doniach-Sunjic expression is used to describe the Kondo peak and we analyze the effect of a complex Fano phase, arising from an external magnetic field, on the conductance pattern. It is demonstrated that such phase generates local oscillations of the Fano-Kondo line shape and can lead to the suppression of anti-resonances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fenômenos oscilatórios e ressonantes são explorados em vários cursos experimentais de física. Em geral os experimentos são interpretados no limite de pequenas oscilações e campos uniformes. Neste artigo descrevemos um experimento de baixo custo para o estudo da ressonância em campo magnético da agulha de uma bússola fora dos limites acima. Nesse caso, termos não lineares na equação diferencial são responsáveis por fenômenos interessantes de serem explorados em laboratórios didáticos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é apresentado um experimento incluído no contexto de experimentos longos adotado nas disciplinas experimentais de eletricidade, magnetismo e óptica, e consiste na caracterização de um seletor de velocidades que funciona com campos elétricos e magnéticos cruzados. Utiliza-se um tubo de raios catódicos para gerar um feixe de elétrons. As placas de deflexão vertical do tubo geram o campo elétrico e um par de bobinas, com os eixos perpendiculares ao eixo do tubo, gera o campo magnético. São realizados estudos de trajetória dos elétrons com auxílio de um programa de simulação de elétrons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A imagem por ressonância magnética (IRM) é o método de diagnóstico por imagem não invasivo mais sensível para avaliar as partes moles, particularmente o encéfalo, porém trata-se de uma técnica onerosa. O método fundamenta-se no fenômeno da ressonância magnética nuclear que ocorre quando núcleos atômicos com propriedades magnéticas presentes no corpo são submetidos a um campo magnético intenso, sendo posteriormente excitados por energia de radiofrequência e gerando, por sua vez, um sinal de onda de radiofrequência capaz de ser captado por uma antena receptora, passando por um processo matemático, chamado Transformada de Fourier, para posterior formação da imagem. Esse estudo objetivou realizar 10 exames completos da cabeça em cadáveres de cães normais à IRM e confeccionar um Atlas com as estruturas identificadas. As imagens foram adquiridas em um aparelho de ressonância magnética Gyroscan S15/HP Philips com campo magnético de 1,5Tesla. Os cadáveres foram posicionados com a cabeça no interior de uma bobina de cabeça humana e foram submetidos a cortes iniciais sagitais a partir de onde se planejou os cortes transversais e dorsais nas sequências de pulso spin-eco T1, T2 e DP. Em T1 utilizou-se TR=400ms e TE=30ms, T2 utilizou-se TR=2000ms e TE=80ms e na DP utilizou-se TR=2000ms e TE=30ms. A espessura do corte foi de 4mm, o número de médias foi igual a 2, a matriz foi de 256x256, o fator foi igual a 1,0 e o campo de visão foi de 14cm. A duração do exame completo da cabeça foi de 74,5minutos. As imagens obtidas com as sequências utilizadas e com a bobina de cabeça humana foram de boa qualidade. Em T1 a gordura tornou-se hiperintensa e o líquido hipointenso. Em T2 a gordura ficou menos hiperintensa e o líquido hiperintenso. A cortical óssea e o ar foram hipointensos em todas as sequências utilizadas devido a baixa densidade de prótons. A sequência DP mostrou o melhor contraste entre a substância branca e cinzenta quando comparada a T2 e a T1. T2 evidenciou o líquido cefalorraquidiano tornando possível a distinção dos sulcos e giros cerebrais. Através do exame de IRM foi possível, pelo contraste, identificar as estruturas ósseas componentes da arquitetura da região, músculos, grandes vasos venosos e arteriais e estruturas do sistema nervoso central, além de elementos do sistema digestório, respiratório e estruturas dos olhos entre outras. Nesse estudo as IRM adquiridas nas sequências T1, DP e T2 foram complementares para o estudo dos aspectos anatômicos da cabeça de cães demonstrando-os com riqueza de detalhes. O tempo requerido para o exame completo da cabeça é compátivel para uso em animais vivos desde que devidamente anestesiados e controlados. Os resultados obtidos por esse trabalho abrem caminho em nosso meio, para o estudo de animais vivos e para o início da investigação de doenças, principalmente as de origem neurológica, visto ser esta técnica excelente para a visibilização do encéfalo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A ressonância magnética é a propriedade física exibida por núcleos de determinados elementos que, quando submetidos a um campo magnético forte e excitados por ondas de rádio em determinada freqüência (Freqüência de Larmor), emitem rádio sinal, o qual pode ser captado por uma antena e transformado em imagem. A imagem por ressonância magnética (IRM) é o método de diagnóstico por imagem não-invasivo mais sensível para avaliar partes moles, particularmente o encéfalo, porém trata-se de uma técnica onerosa. Ela apresenta grande potencial diagnóstico, poucos efeitos deletérios e muitos benefícios a serem obtidos com o seu uso. Além disso, a IRM fornece informações anatômicas acuradas, imagens em qualquer plano do corpo, bom contraste e resolução espacial e por si só pode sugerir um diagnóstico. Porém, não permite um diagnóstico histológico específico e deve ser interpretada em contexto com outros achados clínicos e patológicos. Esta revisão teve como objetivos mostrar as bases físicas da ressonância magnética e propiciar mais conhecimento aos veterinários.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study reports on the successful use of magnetic albumin nanosphere (MAN) with in vivo magnetohyperthermia (MHT) in a mouse Ehrlich tumor. Maghemite nanoparticles (8.9 nm average diameter) were encapsulated within MAN (73.0 nm average diameter). Ehrlich tumor obtained after implantation of tumor cells in the subcutaneous tissue of mice was used as a model throughout this study. MHT was performed with MAN (40 mu L) containing 1.2 x 10(15) particle/mL and 40 Oe amplitude ac magnetic field oscillating at 1 MHz. Animals not treated, treated with MAN, or exposed to the ac field were used as controls. Histopathological analysis was carried out after 2, 5, or 11 days of tumor implantation. We found that the MHT most efficient condition was obtained while applying the ac field protocol twice a day during three consecutive days. Further, in this ac field-treated group no proliferation cells were detected. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3559498]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The origin of the short-term variability in Be stars remains a matter of controversy. Pulsations and rotational modulation are the components of the favored hypothesis. Aims. We present our analysis of CoRoT data of the B8IIIe star HD 175869 observed during the first short run in the center direction (SRC1). Methods. We review both the instrumental effects visible in the CoRoT light curve and the analysis methods used by the CoRoT Be team. We applied these methods to the CoRoT light curve of the star HD 175869. A search for line-profile variations in the spectroscopic data was also performed. We also searched for a magnetic field, by applying the LSD technique to spectropolarimetric data. Results. The light curve exhibits low-amplitude variations of the order of 300 mu mag with a double wave shape. A frequency within the range determined for the rotational frequency and 6 of its harmonics are detected. The main frequency and its first harmonic exhibit amplitude variations of a few days. Other significant frequencies of low-amplitude from 25 to a few mu mag are also found. The analysis of line profiles from ground-based spectroscopic data does not detect any variation. In addition, no Zeeman signature was found. Conclusions. Inhomogeneities caused by stellar activity in or just above the photosphere are proposed to produce the photometric variability detected by CoRoT in the Be star HD 175869. The hypothesis that non-radial pulsations are the origin of these variations cannot be excluded.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. Our goal is to study the physical properties of the circumstellar environment of young stellar objetcs (YSOs). In particular, the determination of the scattering mechanism can help us to constrain the optical depth of the disk and/or envelope in the near infrared. Methods. We used the IAGPOL imaging polarimeter along with the CamIV infrared camera at the LNA observatory to obtain near infrared polarimetry measurements in the H band of a sample of optically visible YSOs, namely, eleven T Tauri stars and eight Herbig Ae/Be stars. An independent determination of the disk (or jet) orientation was obtained for twelve objects from the literature. The circumstellar optical depth could then be estimated by comparing the integrated polarization position angle (PA) with the direction of the major axis of the disk projected onto the plane of the sky. Optically thin disks have, in general, a polarization PA that is perpendicular to the disk plane. In contrast, optically thick disks have polarization PAs parallel to the disks. Results. Among the T Tauri stars, three are consistent with having optically thin disks (AS 353A, RY Tau and UY Aur) and five with optically thick disks (V536 Aql, DG Tau, DO Tau, HL Tau and LkH alpha 358). Among the Herbig Ae/Be stars, two stars exhibit evidence of optically thin disks (Hen 3-1191 and VV Ser) and two of optically thick disks (PDS 453 and MWC 297). Our results seem consistent with optically thick disks at near infrared bands, which are more likely to be associated with younger YSOs. Marginal evidence of polarization reversal is found in RY Tau, RY Ori, WW Vul, and UY Aur. In the first three cases, this feature can be associated with the UXOR phenomenon. Correlations with the IRAS colors and the spectral index yielded evidence of an evolutionary segregation in which the disks tend to be optically thin when they are older.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The remarkable astrometric capabilities of the Chandra Observatory offer the possibility to measure proper motions of X-ray sources with an unprecedented accuracy in this wavelength range. We recently completed a proper motion survey of three of the seven thermally emitting radio-quiet isolated neutron stars (INSs) discovered in the ROSAT all-sky survey. These INSs (RXJ0420.0-5022, RXJ0806.4-4123 and RXJ1308.6+2127) either lack an optical counterpart or have one so faint that ground based or space born optical observations push the current possibilities of the instrumentation to the limit. Pairs of ACIS observations were acquired 3 to 5 years apart to measure the displacement of the sources on the X-ray sky using as a reference the background of extragalactic or remote Galactic X-ray sources. We derive 2 sigma upper limits of 123 mas yr(-1) and 86 mas yr(-1) on the proper motion of RXJ0420.0-5022 and RXJ0806.4-4123, respectively. RXJ1308.6+2127 exhibits a very significant displacement (similar to 9 sigma) yielding mu = 220 +/- 25 mas yr(-1), the second fastest measured among all ROSAT-discovered INSs. The source is probably moving away rapidly from the Galactic plane at a speed which precludes any significant accretion of matter from the interstellar medium. Its transverse velocity of similar to 740 (d/700 pc) km s(-1) might be the largest of all ROSAT INSs and its corresponding spatial velocity lies among the fastest recorded for neutron stars. RXJ1308.6+2127 is thus a middle-aged (age similar to 1 My) high velocity cooling neutron star. We investigate its possible origin in nearby OB associations or from a field OB star. In most cases, the flight time from birth place appears significantly shorter than the characteristic age derived from spin down rate. Overall, the distribution in transverse velocity of the ROSAT INSs is not statistically different from that of normal radio pulsars.