930 resultados para Input-output data


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various studies investigating the future impacts of integrating high levels of renewable energy make use of historical meteorological (met) station data to produce estimates of future generation. Hourly means of 10m horizontal wind are extrapolated to a standard turbine hub height using the wind profile power or log law and used to simulate the hypothetical power output of a turbine at that location; repeating this procedure using many viable locations can produce a picture of future electricity generation. However, the estimate of hub height wind speed is dependent on the choice of the wind shear exponent a or the roughness length z0, and requires a number of simplifying assumptions. This paper investigates the sensitivity of this estimation on generation output using a case study of a met station in West Freugh, Scotland. The results show that the choice of wind shear exponent is a particularly sensitive parameter which can lead to significant variation of estimated hub height wind speed and hence estimated future generation potential of a region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many macroeconomic series, such as U.S. real output growth, are sampled quarterly, although potentially useful predictors are often observed at a higher frequency. We look at whether a mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth. The MIDAS specification used in the comparison uses a novel way of including an autoregressive term. We find that the use of monthly data on the current quarter leads to significant improvement in forecasting current and next quarter output growth, and that MIDAS is an effective way to exploit monthly data compared with alternative methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several runs of the BEAM4 model were carried out, combining several sets of input parameters from von Bertalanffy's growth curve (Lt = L-x[1 - e(-k(-to))]) and the natural mortality (M), with sets or parameters from the length-weight relationship (W=aL(b)). Further simulations were made with variations of +/- 20%, in the input parameters: recruitment (R), catchability coefficient (q), and the lengths at which 50 and 75% of the fishes are retained by the net (L-50%, and L-75%). The data used were those of the pair trawl fisheries for corvina Micropogonias furnieri, off southeastern Brazil. Results showed variations in the output (landed weight) ranging from - 62 to 147% associated with the diverse sets of VBGF and LWR parameters, and lower variations associated with the other input parameters tested. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researches on control for power electronics have looked for original solutions in order to advance renewable resources feasibility, specially the photovoltaic (PV). In this context, for PV renewable energy source the usage of compact, high efficiency, low cost and reliable converters are very attractive. In this context, two improved simplified converters, namely Tri-state Boost and Tri-state Buck-Boost integrated single-phase inverters, are achieved with the presented Tri-state modulation and control schemes, which guarantees the input to output power decoupling control. This feature enhances the field of single-phase PV inverters once the energy storage is mainly inductive. The main features of the proposal are confirmed with some simulations and experimental results. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a performance analysis of a baseband multiple-input single-output ultra-wideband system over scenarios CM1 and CM3 of the IEEE 802.15.3a channel model, incorporating four different schemes of pre-distortion: time reversal, zero-forcing pre-equaliser, constrained least squares pre-equaliser, and minimum mean square error pre-equaliser. For the third case, a simple solution based on the steepest-descent (gradient) algorithm is adopted and compared with theoretical results. The channel estimations at the transmitter are assumed to be truncated and noisy. Results show that the constrained least squares algorithm has a good trade-off between intersymbol interference reduction and signal-to-noise ratio preservation, providing a performance comparable to the minimum mean square error method but with lower computational complexity. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.

Relevância:

40.00% 40.00%

Publicador: