951 resultados para Infrared Visualization
Resumo:
The Simulation Automation Framework for Experiments (SAFE) streamlines the de- sign and execution of experiments with the ns-3 network simulator. SAFE ensures that best practices are followed throughout the workflow a network simulation study, guaranteeing that results are both credible and reproducible by third parties. Data analysis is a crucial part of this workflow, where mistakes are often made. Even when appearing in highly regarded venues, scientific graphics in numerous network simulation publications fail to include graphic titles, units, legends, and confidence intervals. After studying the literature in network simulation methodology and in- formation graphics visualization, I developed a visualization component for SAFE to help users avoid these errors in their scientific workflow. The functionality of this new component includes support for interactive visualization through a web-based interface and for the generation of high-quality, static plots that can be included in publications. The overarching goal of my contribution is to help users create graphics that follow best practices in visualization and thereby succeed in conveying the right information about simulation results.
Resumo:
BACKGROUND: Chronic neck pain after whiplash injury is caused by cervical zygapophysial joints in 50% of patients. Diagnostic blocks of nerves supplying the joints are performed using fluoroscopy. The authors' hypothesis was that the third occipital nerve can be visualized and blocked with use of an ultrasound-guided technique. METHODS: In 14 volunteers, the authors placed a needle ultrasound-guided to the third occipital nerve on both sides of the neck. They punctured caudal and perpendicular to the 14-MHz transducer. In 11 volunteers, 0.9 ml of either local anesthetic or normal saline was applied in a randomized, double-blind, crossover manner. Anesthesia was controlled in the corresponding skin area by pinprick and cold testing. The position of the needle was controlled by fluoroscopy. RESULTS: The third occipital nerve could be visualized in all subjects and showed a median diameter of 2.0 mm. Anesthesia was missing after local anesthetic in only one case. There was neither anesthesia nor hyposensitivity after any of the saline injections. The C2-C3 joint, in a transversal plane visualized as a convex density, was identified correctly by ultrasound in 27 of 28 cases, and 23 needles were placed correctly into the target zone. CONCLUSIONS: The third occipital nerve can be visualized and blocked with use of an ultrasound-guided technique. The needles were positioned accurately in 82% of cases as confirmed by fluoroscopy; the nerve was blocked in 90% of cases. Because ultrasound is the only available technique today to visualize this nerve, it seems to be a promising new method for block guidance instead of fluoroscopy.
Resumo:
Data visualization is the process of representing data as pictures to support reasoning about the underlying data. For the interpretation to be as easy as possible, we need to be as close as possible to the original data. As most visualization tools have an internal meta-model, which is different from the one for the presented data, they usually need to duplicate the original data to conform to their meta-model. This leads to an increase in the resources needed, increase which is not always justified. In this work we argue for the need of having an engine that is as close as possible to the data and we present our solution of moving the visualization tool to the data, instead of moving the data to the visualization tool. Our solution also emphasizes the necessity of reusing basic blocks to express complex visualizations and allowing the programmer to script the visualization using his preferred tools, rather than a third party format. As a validation of the expressiveness of our framework, we show how we express several already published visualizations and describe the pros and cons of the approach.
Resumo:
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.
Resumo:
ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.
Resumo:
BACKGROUND: /st> Retrobulbar anaesthesia allows eye surgery in awake patients. Severe complications of the blind techniques are reported. Ultrasound-guided needle introduction and direct visualization of the spread of local anaesthetic may improve quality and safety of retrobulbar anaesthesia. Therefore, we developed a new ultrasound-guided technique using human cadavers. METHODS: /st> In total, 20 blocks on both sides in 10 embalmed human cadavers were performed. Using a small curved array transducer and a long-axis approach, a 22 G short bevel needle was introduced under ultrasound guidance lateral and caudal of the eyeball until the needle tip was seen 2 mm away from the optic nerve. At this point, 2 ml of contrast dye as a substitute for local anaesthetic was injected. Immediately after the injection, the spread of the contrast dye was documented by means of CT scans performed in each cadaver. RESULTS: /st> The CT scans showed the distribution of the contrast dye in the muscle cone and behind the posterior sclera in all but one case. No contrast dye was found inside the optic nerve or inside the eyeball. In one case, there could be an additional trace of contrast dye behind the orbita. CONCLUSIONS: /st> Our new ultrasound-guided technique has the potential to improve safety and efficacy of the procedure by direct visualization of the needle placement and the distribution of the injected fluid. Furthermore, the precise injection near the optic nerve could lead to a reduction of the amount of the local anaesthetic needed with fewer related complications.