935 resultados para Induced Damage
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The antioxidant activity of the amino acid glutamine was investigated to obtain protection against peroxidative damage in rat kidney and nephrotoxicity induced by the treatment with a single dose of the antitumoral cisplatin (5 mg kg(-1) body weight). The animals were divided into four treatment and control groups of six rats each (n = 6). Cisplatin was injected i.p. and glutamine (300 mg kg(-1) body weight) was given by gavage 24 h before the cisplatin injection. After 24 h and 7 days of cisplatin administration, the rats were sacrificed. A single dose of cisplatin resulted in significant reduction in body weight and creatinine clearance, and higher urinary volumes were observed in all groups treated with this antitumor drug (P < 0.05). Renal tissue from cisplatin-treated rats showed an increase in malondialdehyde production and increase in glutathione contents 24 h and 7 days after cisplatin administration. Pretreatment of rats with glutamine substantially inhibited the increase in the levels of renal glutathione induced by cisplatin 24 h after the i.p. injection. The malondialdehyde, in the renal tissues was significantly reduced 7 days after cisplatin treatment. However, the reduction in the peroxidative damage did not reach the value of the control group. The protective effects obtained by glutamine pretreatment in peroxidative alterations were not observed in the other parameters studied. These results suggest that glutamine partially protect against cisplatin-induced lipid peroxidation damage, but it was not enough to inhibit cisplatin-induced nephrotoxicity in rats. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Lycopene is a natural carotenoid, free radical scavenger, and presents protective effects by inhibiting oxidative DNA damage. The objective of the current study was to investigate the cytogenetic effects of a single acute and four daily gavage administrations of lycopene, and to examine possible protective effects on chromosomal damage induced by the antitumor drug cisplatin (cDDP) in rat bone marrow cells. The animals were divided into treatment groups, with three lycopene doses in the acute treatment (2, 4, and 6 mg/kg b.w.), three lycopene doses in the subacute treatment (0.5, 1.0, and 1.5 mg/kg b.w.) with and without cDDP (5 mg/kg b.w. i.p.), and respective controls. The results indicated that lycopene is neither cytotoxic nor clastogenic when compared with the negative controls (P > 0.01). cDDP-treated animals submitted to acute and subacute treatments with different lycopene doses showed a significant reduction (p < 0.01) in the number of abnormal metaphases when compared with the animals treated only with cDDP. The protective effects of lycopene on cDDP-induced chromosomal damage may be attributed to its antioxidant activity. These results suggest that this carotenoid may prove useful in reducing some of the toxic effects associated with certain classes of chemotherapeutic agents. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Leishmania chagasi, which causes visceral leishmaniasis in South America, is an obligate intracellular protozoan. Production of nitric oxide by macrophages during the inflammatory response is one of the main microbicidal mechanisms against this parasite. The goal of this study was to evaluate whether L. chagasi infection causes DNA damage in peripheral blood and spleen cells of Balb/c mice and whether such damage may be related to NO production. Balb/c mice were either infected with L chagasi or maintained as controls. The single-cell gel electrophoresis (comet) assay was used to measure DNA damage in peripheral blood and spleen cells, and the Griess reaction was used to measure NO production in the spleen. L chagasi infection induced DNA damage in peripheral blood and spleen cells of infected mice. Macrophages from the control group, challenged with L. chagasi, showed significantly (p < 0.05) greater NO production, compared to non-challenged cells. Treatment of spleen cells with N(G)-monomethyl-L-arginine (LNMMA) caused a significant reduction of NO production and DNA damage (p < 0.05). Our results indicate that L. chagasi induces DNA damage in the peripheral blood and spleen cells and that NO not only causes killing of the parasite but also induces DNA damage in adjacent cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
dThe objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2): non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40 mg/kg b.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was designed to evaluate the toxicogenetic or protective effect of cooked and dehydrated black beans (Phaseolus vulgaris L.) in bone marrow and peripheral blood cells of exposed mice. The frequency of micronuclei detected using the bone marrow erythrocyte micronucleus test and level of DNA lesions detected by the comet assay were chosen as end-points reflecting mutagenic and genotoxic damage, respectively. Initially, Swiss male mice were fed with a 20% black bean diet in order to detect mutagenic and genotoxic activity. However, no increase in the frequency of bone marrow micronucleated polychromatic erythrocytes (MN PCEs) or DNA lesion in leukocytes was observed. In contrast, received diets containing 1, 10 or 20% of black beans, a clear, but not dose-dependent reduction in the frequency of MN PCEs were observed in animals simultaneously treated with cyclophosphamide, an indirect acting mutagen. Similar results were observed in leukocytes by the comet assay. Commercial anthocyanin was also tested in an attempt to identify the bean components responsible for this protective effect. However, instead of being protective, the flavonoid, at the highest dose administered (50 mg/kg bw), induced primary DNA lesion, as detected by the comet assay. These data indicate the importance of food components in preventing genetic damage induced by chemical mutagens, and also reinforce the role of toxicogenetic techniques in protecting human health. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Chemoprevention opens new perspectives in the prevention of cancer and other degenerative diseases. Use of target-organ biological models at the histological and genetic levels can markedly facilitate the identification of such potential chemopreventive agents. Colon cancer is one of the highest incidence rates throughout the world and some evidences have indicated carotenoids as possible agents that decrease the risk of colorectal cancer. In the present study, we evaluate the activity of annatto (Bixa orellaria L.), a natural food colorant rich in carotenoid, on the formation of aberrant crypt foci (ACF) induced by dimethy1hydrazine (DMH) in rat colon. Further, we investigate, the effect of annatto on DMH-induced DNA damage, by the comet assay. Male Wistar rats were given s.c. injections of DMH (40 mg/kg body wt.) twice a week for 2 weeks to induce ACE They also received experimental diets containing annatto at 20, 200 or 1000 ppm for five 5 weeks before (pre-treatment), or 10 weeks after (post-treatment) DMH treatment. In both protocols the rats were sacrificed on week 15th. For the comet assay, the animals were fed with the same experimental diets for 2 weeks. Four hours before the sacrifice, the animals received an s.c. injection of DMH (40 mg/kg body wt.). Under such conditions, dietary administration of 1000 ppm annatto neither induce DNA damage in blood and colon cells nor aberrant crypt foci in rat distal colon. Conversely, annatto was successful in inhibiting the number of crypts/colon (animal), but not in the incidence of DMH-induced ACF, mainly when administered after DMH. However, no antigenotoxic effect was observed in colon cells. These findings suggest possible chemopreventive effects of annatto through their modulation of the cryptal cell proliferation but not at the initiation stage of colon carcinogenesis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Doxorubicin is an excellent chemotherapeutic agent utilized for several types of cancer but the irreversible doxorubicin-induced cardiac damage is the major limitation for its use. Oxidative stress seems to be associated with some phase of the toxicity mechanism process. To determine if lycopene protects against doxorubicin-induced cardiotoxicity, male Wistar rats were randomly assigned either to control, lycopene, doxorubicin or doxorubicin + lycopene groups. They received corn oil (control, doxorubicin) or lycopene (5 mg/kg body weight a day) (lycopene, doxorubicin + lycopene) by gavage for a 7-week period. They also received saline (control, lycopene) or doxorubicin (4 mg/kg) (doxorubicin, doxorubin + lycopene) intraperitoneally by week 3, 4 5 and 6. Animals underwent echocardiogram and were killed for tissue analyses by week 7. Mean lycopene levels (nmol/kg) in liver were higher in the doxorubicin + lycopene group (5822.59) than in the lycopene group (2496.73), but no differences in lycopene were found in heart or Plasma of these two groups. Lycopene did not prevent left ventricular systolic dysfunction induced by doxorubicin. However, morphologic examination revealed that doxorubicin-induced myocyte damage was significantly suppressed in rats treated with lycopene. Doxorubicin treatment was followed by increase of myocardium interstitial collagen volume fraction. Our results show that: (i) doxorubicin-induced cardiotoxicity was confirmed by echocardiogram and morphological evaluations; (ii) lycopene absorption was confirmed by its levels in heart, liver and plasma; (iii) lycopene supplementation provided myocyte protection without preventing interstitial collagen accumulation increase; (iv) doxorubicin-induced cardiac dysfunction was not prevented by lycopene supplementation; and (v) lycopene depletion was not observed in plasma and tissues from animals treated with doxorubicin.
Resumo:
The etiology of hormone-induced cancers has been considered to be a combination of genotoxic and epigenetic events. Currently, the Comet assay is widely used for detecting genotoxicity because it is relatively simple, sensitive, and capable of detecting various kinds of DNA damage. The present study evaluates the genotoxic potential of endogenous and synthetic sex hormones, as detected by the Comet assay. Blood cells were obtained from 12 nonsmoking and 12 smoking women with regular menstrual cycles and from 12 nonsmoking women taking low-dose oral contraceptives (OC). Peripheral blood samples were collected at three phases of the menstrual cycle (early follicular, mean follicular, and luteal phases), or at three different moments of oral contraceptive intake. Three blood samples were also collected from 12 healthy nonsmoking men, at the same time as oral contraceptive users. Results showed no significant difference in the level of DNA damage among the three moments of the menstrual cycle either in nonsmoking and smoking women, or between them. No significant difference in DNA damage was also observed among oral contraceptive users, nonusers, and men. Together, these data indicate lack of genotoxicity induced by the physiological level of the female sex hormones and OC as assessed by the alkaline Comet assay. In conclusion, normal fluctuation in endogenous sex hormones and use of low-doses of oral contraceptive should not interfere with Comet assay data when this technique is used for human biomonitoring.