903 resultados para Indirectly affects
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIMcompatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
Multicarrier code division multiple access (MC-CDMA) is a very promising candidate for the multiple access scheme in fourth generation wireless communi- cation systems. During asynchronous transmission, multiple access interference (MAI) is a major challenge for MC-CDMA systems and significantly affects their performance. The main objectives of this thesis are to analyze the MAI in asyn- chronous MC-CDMA, and to develop robust techniques to reduce the MAI effect. Focus is first on the statistical analysis of MAI in asynchronous MC-CDMA. A new statistical model of MAI is developed. In the new model, the derivation of MAI can be applied to different distributions of timing offset, and the MAI power is modelled as a Gamma distributed random variable. By applying the new statistical model of MAI, a new computer simulation model is proposed. This model is based on the modelling of a multiuser system as a single user system followed by an additive noise component representing the MAI, which enables the new simulation model to significantly reduce the computation load during computer simulations. MAI reduction using slow frequency hopping (SFH) technique is the topic of the second part of the thesis. Two subsystems are considered. The first sub- system involves subcarrier frequency hopping as a group, which is referred to as GSFH/MC-CDMA. In the second subsystem, the condition of group hopping is dropped, resulting in a more general system, namely individual subcarrier frequency hopping MC-CDMA (ISFH/MC-CDMA). This research found that with the introduction of SFH, both of GSFH/MC-CDMA and ISFH/MC-CDMA sys- tems generate less MAI power than the basic MC-CDMA system during asyn- chronous transmission. Because of this, both SFH systems are shown to outper- form MC-CDMA in terms of BER. This improvement, however, is at the expense of spectral widening. In the third part of this thesis, base station polarization diversity, as another MAI reduction technique, is introduced to asynchronous MC-CDMA. The com- bined system is referred to as Pol/MC-CDMA. In this part a new optimum com- bining technique namely maximal signal-to-MAI ratio combining (MSMAIRC) is proposed to combine the signals in two base station antennas. With the applica- tion of MSMAIRC and in the absents of additive white Gaussian noise (AWGN), the resulting signal-to-MAI ratio (SMAIR) is not only maximized but also in- dependent of cross polarization discrimination (XPD) and antenna angle. In the case when AWGN is present, the performance of MSMAIRC is still affected by the XPD and antenna angle, but to a much lesser degree than the traditional maximal ratio combining (MRC). Furthermore, this research found that the BER performance for Pol/MC-CDMA can be further improved by changing the angle between the two receiving antennas. Hence the optimum antenna angles for both MSMAIRC and MRC are derived and their effects on the BER performance are compared. With the derived optimum antenna angle, the Pol/MC-CDMA system is able to obtain the lowest BER for a given XPD.
Resumo:
Aberrations affect image quality of the eye away from the line of sight as well as along it. High amounts of lower order aberrations are found in the peripheral visual field and higher order aberrations change away from the centre of the visual field. Peripheral resolution is poorer than that in central vision, but peripheral vision is important for movement and detection tasks (for example driving) which are adversely affected by poor peripheral image quality. Any physiological process or intervention that affects axial image quality will affect peripheral image quality as well. The aim of this study was to investigate the effects of accommodation, myopia, age, and refractive interventions of orthokeratology, laser in situ keratomileusis and intraocular lens implantation on the peripheral aberrations of the eye. This is the first systematic investigation of peripheral aberrations in a variety of subject groups. Peripheral aberrations can be measured either by rotating a measuring instrument relative to the eye or rotating the eye relative to the instrument. I used the latter as it is much easier to do. To rule out effects of eye rotation on peripheral aberrations, I investigated the effects of eye rotation on axial and peripheral cycloplegic refraction using an open field autorefractor. For axial refraction, the subjects fixated at a target straight ahead, while their heads were rotated by ±30º with a compensatory eye rotation to view the target. For peripheral refraction, the subjects rotated their eyes to fixate on targets out to ±34° along the horizontal visual field, followed by measurements in which they rotated their heads such that the eyes stayed in the primary position relative to the head while fixating at the peripheral targets. Oblique viewing did not affect axial or peripheral refraction. Therefore it is not critical, within the range of viewing angles studied, if axial and peripheral refractions are measured with rotation of the eye relative to the instrument or rotation of the instrument relative to the eye. Peripheral aberrations were measured using a commercial Hartmann-Shack aberrometer. A number of hardware and software changes were made. The 1.4 mm range limiting aperture was replaced by a larger aperture (2.5 mm) to ensure all the light from peripheral parts of the pupil reached the instrument detector even when aberrations were high such as those occur in peripheral vision. The power of the super luminescent diode source was increased to improve detection of spots passing through the peripheral pupil. A beam splitter was placed between the subjects and the aberrometer, through which they viewed an array of targets on a wall or projected on a screen in a 6 row x 7 column matrix of points covering a visual field of 42 x 32. In peripheral vision, the pupil of the eye appears elliptical rather than circular; data were analysed off-line using custom software to determine peripheral aberrations. All analyses in the study were conducted for 5.0 mm pupils. Influence of accommodation on peripheral aberrations was investigated in young emmetropic subjects by presenting fixation targets at 25 cm and 3 m (4.0 D and 0.3 D accommodative demands, respectively). Increase in accommodation did not affect the patterns of any aberrations across the field, but there was overall negative shift in spherical aberration across the visual field of 0.10 ± 0.01m. Subsequent studies were conducted with the targets at a 1.2 m distance. Young emmetropes, young myopes and older emmetropes exhibited similar patterns of astigmatism and coma across the visual field. However, the rate of change of coma across the field was higher in young myopes than young emmetropes and was highest in older emmetropes amongst the three groups. Spherical aberration showed an overall decrease in myopes and increase in older emmetropes across the field, as compared to young emmetropes. Orthokeratology, spherical IOL implantation and LASIK altered peripheral higher order aberrations considerably, especially spherical aberration. Spherical IOL implantation resulted in an overall increase in spherical aberration across the field. Orthokeratology and LASIK reversed the direction of change in coma across the field. Orthokeratology corrected peripheral relative hypermetropia through correcting myopia in the central visual field. Theoretical ray tracing demonstrated that changes in aberrations due to orthokeratology and LASIK can be explained by the induced changes in radius of curvature and asphericity of the cornea. This investigation has shown that peripheral aberrations can be measured with reasonable accuracy with eye rotation relative to the instrument. Peripheral aberrations are affected by accommodation, myopia, age, orthokeratology, spherical intraocular lens implantation and laser in situ keratomileusis. These factors affect the magnitudes and patterns of most aberrations considerably (especially coma and spherical aberration) across the studied visual field. The changes in aberrations across the field may influence peripheral detection and motion perception. However, further research is required to investigate how the changes in aberrations influence peripheral detection and motion perception and consequently peripheral vision task performance.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
This paper turns Snow-White's magic mirror onto recent economics Nobel Prize winners, top economists and happiness researchers, and through the eyes of the 'man in the street' seeks to determine who the happiest academic is. The study not only provides a clear answer to this question but also unveils who is the ladies' man and who is the sweetheart of the aged. It also explores the extent to which information matters and whether individuals' self-reported happiness affects their perceptions about the happiness of these superstars in economics.
Resumo:
Problem: This study considers whether requiring learner drivers to complete a set number of hours while on a learner licence affects the amount of hours of supervised practice that they undertake. It compares the amount of practice that learners in Queensland and New South Wales report undertaking. At the time the study was conducted, learner drivers in New South Wales were required to complete 50 hours of supervised practice while those from Queensland were not. Method: Participants were approached outside driver licensing centres after they had just completed their practical driving test to obtain their provisional (intermediate) licence. Those agreeing to participate were interviewed over the phone later and asked a range of questions to obtain information including socio-demographic details and amount of supervised practice completed. Results: There was a significant difference in the amount of practice that learners reported undertaking. Participants from New South Wales reported completing a significantly greater amount of practice (M = 73.3 hours, sd = 29.12 hours) on their learner licence than those from Queensland (M = 64.1 hours, sd = 51.05 hours). However, the distribution of hours of practice among the Queensland participants was bimodal in nature. Participants from Queensland reported either completing much less or much more practice than the New South Wales average. Summary: While it appears that the requirement that learner drivers complete a set number of hours may increase the average amount of hours of practice obtained, it may also serve to discourage drivers from obtaining additional practice, over and above the required hours. Impact on Industry: The results of this study suggest that the implications of requiring learner drivers to complete a set number of hours of supervised practice are complex. In some cases, policy makers may inadvertently limit the amount of hours learners obtain to the mandated amount rather than encouraging them to obtain as much practice as possible.
Resumo:
Biased estimation has the advantage of reducing the mean squared error (MSE) of an estimator. The question of interest is how biased estimation affects model selection. In this paper, we introduce biased estimation to a range of model selection criteria. Specifically, we analyze the performance of the minimum description length (MDL) criterion based on biased and unbiased estimation and compare it against modern model selection criteria such as Kay's conditional model order estimator (CME), the bootstrap and the more recently proposed hook-and-loop resampling based model selection. The advantages and limitations of the considered techniques are discussed. The results indicate that, in some cases, biased estimators can slightly improve the selection of the correct model. We also give an example for which the CME with an unbiased estimator fails, but could regain its power when a biased estimator is used.
Resumo:
The current study sought to understand adolescent protective behavior in friendship using a Theory of Planned Behavior framework. In particular, the study sought to consider a young persons’ direct and active intervention to inhibit their friends’ risky behavior or to assist them when the behavior leads to injury. The role of attitudes regarding the consequences, norms and control about protective behavior were examined both qualitatively through focus groups (n= 50) and quantitatively through surveys from a sample of 540 Year 9 students (13-14 years old). There was some support for the theory with attitudes regarding the consequences of the behavior and norms predicting intended protective behavior. A path analysis was conducted with a sub-sample of 140 students which showed that intentions to be protective and perceived control to undertake protective behavior directly predicted such behavior after a 3 month interval. Attitudes towards the consequences and norms only indirectly predicted protective behavior via intention. The findings provide important applied information for interventions designed to increase adolescent protective behavior in their friendships.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
This research investigates how a strong personal relationship (strong tie) between a small business owner-manager and his professional or informal advisor affects the relationship between the advisor's recent performance and the owner-manager's perceptions of the advisor's trustworthiness in terms of ability, benevolence and integrity. A negative moderating effect could point to a 'tie that blinds': the owner-manager may be less critical in evaluating the advisor's perceived trustworthiness in light of their recent performance, because of the existing personal relationship. A conceptual model is constructed and examined with survey data comprising 153 young Finnish businesses. The results show that strong ties increase the owner-manager's perception of the advisor's integrity, disregarding their recent performance. For professional advisors, strong ties reduce the impact of recent performance in the owner-manager's evaluation of their ability. For informal advisors, a strong tie makes it more likely that their benevolence will be evaluated highly in light of their recent performance. While the results show that 'ties can blind' under certain circumstances, the limitations of the study raise the need for further research to specify these contextual factors and examine the causal link between the choice of advisor and business performance.
Resumo:
Principal Topic : Nascent entrepreneurship has drawn the attention of scholars in the last few years (Davidsson, 2006, Wagner, 2004). However, most studies have asked why firms are created focussing on questions such as what are the characteristics (Delmar and Davidsson, 2000) and motivations (Carter, Gartner, Shaver & Reynolds, 2004) of nascent entrepreneurs, or what are the success factors in venture creation (Davidsson & Honig; 2003; Delmar and Shane, 2004). In contrast, the question of how companies emerge is still in its infancy. On a theoretical side, effectuation, developed by Sarasvathy (2001) offers one view of the strategies that may be at work during the venture creation process. Causation, the theorized inverse to effectuation, may be described as a rational reasoning method to create a company. After a comprehensive market analysis to discover opportunities, the entrepreneur will select the alternative with the higher expected return and implement it through the use of a business plan. In contrast, effectuation suggests that the future entrepreneur will develop her new venture in a more iterative way by selecting possibilities through flexibility and interaction with the market, affordability of loss of resources and time invested, development of pre-commitments and alliances from stakeholders. Another contrasting point is that causation is ''goal driven'' while an effectual approach is ''mean driven'' (Sarasvathy, 2001) One of the predictions of effectuation theory is effectuation is more likely to be used by entrepreneurs early in the venture creation process (Sarasvathy, 2001). However, this temporal aspect and the impact of the effectuation strategy on the venture outcomes has so far not been systematically and empirically tested on large samples. The reason behind this research gap is twofold. Firstly, few studies collect longitudinal data on emerging ventures at an early enough stage of development to avoid severe survivor bias. Second, the studies that collect such data have not included validated measures of effectuation. The research we are conducting attempts to partially fill this gap by combining an empirical investigation on a large sample of nascent and young firms with the effectuation/causation continuum as a basis (Sarasvathy, 2001). The objectives are to understand the strategies used by the firms during the creation process and measure their impacts on the firm outcomes. Methodology/Key Propositions : This study draws its data from the first wave of the CAUSEE project where 28,383 Australian households were randomly contacted by phone using a specific methodology to capture emerging firms (Davidsson, Steffens, Gordon, Reynolds, 2008). This screening led to the identification of 594 nascent ventures (i.e., firms that are not operating yet) and 514 young firms (i.e., firms that have started operating from 2004) that were willing to participate in the study. Comprehensive phone interviews were conducted with these 1108 ventures. In a likewise comprehensive follow-up 12 months later, 80% of the eligible cases completed the interview. The questionnaire contains specific sections designed to distinguish effectual and causal processes, innovation, gestation activities, business idea changes and ventures outcomes. The effectuation questions are based on the components of effectuation strategy as described by Sarasvathy (2001) namely: flexibility, affordable loss and pre-commitment from stakeholders. Results from two rounds of pre-testing informed the design of the instrument included in the main survey. The first two waves of data have will be used to test and compare the use of effectuation in the venture creation process. To increase the robustness of the results, temporal use of effectuation will be tested both directly and indirectly. 1. By comparing the use of effectuation in nascent and young firms from wave 1 to 2, we will be able to find out how effectuation is affected by time over a 12-month duration and if the stage of venture development has an impact on its use. 2. By comparing nascent ventures early in the creation process versus nascent ventures late in the creation process. Early versus late can be determined with the help of time-stamped gestation activity questions included in the survey. This will help us to determine the change on a small time scale during the creation phase of the venture. 3. By comparing nascent firms to young (already operational) firms. 4. By comparing young firms becoming operational in 2006 with those first becoming operational in 2004. Results and Implications : Wave 1 and 2 data have been completed and wave 2 is currently being checked and 'cleaned'. Analysis work will commence in September, 2009. This paper is expected to contribute to the body of knowledge on effectuation by measuring quantitatively its use and impact on nascent and young firms activities at different stages of their development. In addition, this study will also increase the understanding of the venture creation process by comparing over time nascent and young firms from a large sample of randomly selected ventures. We acknowledge the results from this study will be preliminary and will have to be interpreted with caution as the changes identified may be due to several factors and may not only be attributed to the use/not use of effectuation. Meanwhile, we believe that this study is important to the field of entrepreneurship as it provides some much needed insights on the processes used by nascent and young firms during their creation and early operating stages.
Resumo:
This paper examines the role of intuition in the way that people operate unfamiliar devices. Intuition is a type of cognitive processing that is often non-conscious and utilises stored experiential knowledge. Intuitive interaction involves the use of knowledge gained from other products and/or experiences. Two initial experimental studies revealed that prior exposure to products employing similar features helped participants to complete set tasks more quickly and intuitively, and that familiar features were intuitively used more often than unfamiliar ones. A third experiment confirmed that performance is affected by a person's level of familiarity with similar technologies, and also revealed that appearance (shape, size and labelling of features) seems to be the variable that most affects time spent on a task and intuitive uses during that time. Age also seems to have an effect. These results and their implications are discussed.
Resumo:
The experimental literature and studies using survey data have established that people care a great deal about their relative economic position and not solely, as standard economic theory assumes, about their absolute economic position. Individuals are concerned about social comparisons. However, behavioral evidence in the field is rare. This paper provides an empirical analysis, testing the model of inequality aversion using two unique panel data sets for basketball and soccer players. We find support that the concept of inequality aversion helps to understand how the relative income situation affects performance in a real competitive environment with real tasks and real incentives.
Resumo:
Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.
Resumo:
Articular cartilage exhibits limited intrinsic regenerative capacity and focal tissue defects can lead to the development of osteoarthritis (OA), a painful and debilitating loss of cartilage tissue. In Australia, 1.4 million people are affected by OA and its prevalence is increasing in line with current demographics. As treatment options are limited, new therapeutic approaches are being investigated including biological resurfacing of joints with tissue-engineered cartilage. Despite some progress in the field, major challenges remain to be addressed for large scale clinical success. For example, large numbers of chondrogenic cells are required for cartilage formation, but chondrocytes lose their chondrogenic phenotype (dedifferentiate) during in vitro propagation. Additionally, the zonal organization of articular cartilage is critical for normal cartilage function, but development of zonal structure has been largely neglected in cartilage repair strategies. Therefore, we hypothesised that culture conditions for freshly isolated human articular chondrocytes from non-OA and OA sources can be improved by employing microcarrier cultures and a reduced oxygen environment and that oxygen is a critical factor in the maintenance of the zonal chondrocyte phenotype. Microcarriers have successfully been used to cultivate bovine chondrocytes, and offer a potential alternative for clinical expansion of human chondrocytes. We hypothesised that improved yields can be achieved by propagating human chondrocytes on microcarriers. We found that cells on microcarriers acquired a flattened, polygonal morphology and initially proliferated faster than monolayercultivated cells. However, microcarrier cultivation over four weeks did not improve growth rates or the chondrogenic potential of non-OA and OA human articular chondrocytes over conventional monolayer cultivation. Based on these observations, we aimed to optimise culture conditions by modifying oxygen tension, to more closely reflect the in vivo environment. We found that propagation at 5% oxygen tension (moderate hypoxia) did not improve proliferation or redifferentiation capacity of human osteoarthritic chondrocytes. Moderate hypoxia increased the expression of chondrogenic markers during redifferentiation. However, osteoarthritic chondrocytes cultivated on microcarriers exhibited lower expression levels of chondrogenic surface marker proteins and had at best equivalent redifferentiation capacities compared to monolayer-cultured cells. This suggests that monolayer culture with multiple passaging potentially selects for a subpopulation of cells with higher differentiation capacity, which are otherwise rare in osteoarthritic, aged cartilage. However, fibroblastic proteins were found to be highly expressed in all cultures of human osteoarthritic chondrocytes indicating the presence of a high proportion of dedifferentiated, senescent cells with a chondrocytic phenotype that was not rescued by moderate hypoxia. The different zones of cartilage support chondrocyte subpopulations, which exhibit characteristic protein expression and experience varying oxygen tensions. We, therefore, hypothesised that oxygen tension affects the zonal marker expression of human articular chondrocytes isolated from the different cartilage layers. We found that zonal chondrocytes maintained these phenotypic differences during in vitro cultivation. Low oxygen environments favoured the expression of the zonal marker proteoglycan 4 in superficial cells, most likely through the promotion of chondrogenesis. The putative zonal markers clusterin and cartilage intermediate layer protein were found to be expressed by all subpopulations of human osteoarthritic chondrocytes ex vivo and, thus, may not be reliable predictors of in vitro stratification using these clinically relevant cells. The findings in this thesis underline the importance of considering low oxygen conditions and zonal stratification when creating native-like cartilaginous constructs. We have not yet found the right cues to successfully cultivate clinically-relevant human osteoarthritic chondrocytes in vitro. A more thorough understanding of chondrocyte biology and the processes of chondrogenesis are required to ensure the clinical success of cartilage tissue engineering.