864 resultados para Illinois. Energy Efficiency Trust Fund Program.
Resumo:
This paper draws on a major study the authors conducted for the Australian Government in 2009. It focuses on the diffusion issues surrounding the uptake of sustainable building and construction products in Australia. Innovative sustainable products can minimise the environmental impact during construction, while maximising asset performance, durability and re-use. However, there are significant challenges faced by designers and clients in the selection of appropriate sustainable products in consideration of the integrated design solution, including overall energy efficiency, water conservation, maintenance and durability, low-impact use and consumption. The paper is a review of the current state of sustainable energy and material product innovations in Australia. It examines the system dynamics surrounding these innovations as well as the drivers and obstacles to their diffusion throughout the Australian construction industry. The case product types reviewed comprise: solar energy technology, small wind turbines, advanced concrete technology, and warm-mixed asphalt. The conclusions highlight the important role played by Australian governments in facilitating improved adoption rates. This applies to governments in their various roles, but particularly as clients/owners, regulators, and investors in education, training, research and development. In their role as clients/owners, the paper suggests that government can better facilitate innovation within the construction industry by adjusting specification policies to encourage the uptake of sustainable products. In the role as regulators, findings suggest governments should be encouraging the application of innovative finance options and positive end-user incentives to promote sustainable product uptake. Also, further education for project-based firms and the client/end users about the long-term financial and environmental benefits of innovative sustainable products is required. As more of the economy’s resources are diverted away from business-as-usual and into the use of sustainable products, some project-based firms may face short-term financial pain in re-shaping their businesses. Government policy initiatives can encourage firms make the necessary adjustments to improve innovative sustainable product diffusion throughout the industry.
Resumo:
Sustainable living is high on the international agenda (Ginsberg & Frame, 2004; Sutton, 2004). If education is fundamental to global transformation towards sustainability, then schools are in strategic positions to facilitate this change. Over recent years, schools in Australia have become more active in encouraging sustainability with the implementation of programs such as Science Education for Sustainable Living (SESL) that focus on topics such as energy efficiency, recycling, enhancing biodiversity, protecting species, and managing resources. This paper reports on a government funded Australian School Innovation in Science, Technology and Mathematics (ASISTM) project titled “Integrating science, technology and mathematics for understanding sustainable living” in which teachers, preservice teachers and other science professionals worked collaboratively to plan and enact a range of SESL programs for primary school students. Participants in this study included: 6 teachers, 5 preservice teachers, 2 university partners, 2 scientists, 4 consultants, and over 250 primary students. The findings from this qualitative study revealed a need for: (1) professional development for understanding SESL, (2) procedures for establishing and implementing SESL, and (3) strategies to devise, implement and evaluate SESL units of work.
Resumo:
Clean Energy Agreement of the MPCCC On 10 July 2011, details of the Multi-Party Climate Change Committee’s Clean Energy Agreement for implementing a carbon price were released. This included an agreed package of measures that the Committee considered would enable Australia to meet its emissions reduction targets in an environmentally and economically efficient way. A copy of the agreement can be found on the website of the Department of Climate Change and Energy Efficiency...
Resumo:
Only a few years ago there were only a handful of buildings in Australia, mainly leased by or from the Commonwealth Government to which a green lease might have application. Now with the passing of the Building Energy Efficiency Disclosure Act 2010 (Cth) all commercial office premises in excess of 2000 square metres have 12 months from 1 November 2010 to obtain a Building Energy Efficiency Certificate as part of Stage 1 of the Federal Government’s National Framework for Energy Efficiency This significant change has focused attention on changes required to the conditions of leases where the building has a NABERS rating. This article considers material from the United Kingdom, the United States and Canada where there are similar policy changes in play and makes suggestions as to how certain clauses of a standard lease of a commercial office block may be altered to meet this new regime.
Resumo:
Green building is building that the focus is to maximize the energy efficiency and resources used. While, retrofitting is the process of renovate or refurnish the existing building. Therefore by retrofit existing buildings that comply with green building requirement, it improves the environmental attributes of the buildings. In Malaysia, existing buildings and its communities contribute over 40% of green house gases to the environment. This paper describes a study that explores the potential to retrofit existing campus buildings that response to sustainable green building standard. A validation survey was carried out and the data collected was analysed using SPSS in order to confirm the significance of retrofitting Universiti Teknologi Malaysia (UTM) buildings toward green building initiative. The results show that all the twenty eight identified green elements recorded average index of higher than 3.5 which means that there is significant needs to retrofit the existing buildings to green buildings. This study concludes that it is urgently need for the campus to response to green building requirements in order to achieve higher energy effeciency and this can be done through effective etrofitting of existing buildings.
Resumo:
China today is experiencing a time when housing is needed more than ever and one approach satisfying this need is by industrialization - a streamlined process aimed at generating profits and promoting energy efficiency in the housing sectors. Although large housing programs have been completed in China, few housing projects have been built in an industrialized manner. One contributing factor is that industrialization is not omnipotent and, just as a coin has two sides, not all the outcomes of industrialization are beneficial. In this paper, a preliminary assessment is made of these two sides - the benefits and hindrances of industrialized housing in China - by literature review and survey. Case studies are used to verify the questionnaire survey results and from which the advantages and disadvantages involved are compared. The findings indicate the need for formulating policies to encourage industrialized housing in China and for well-planned R&D themes to be implemented simultaneously with industry practices in the near future.
Resumo:
Drying is very energy intensive process and consumes about 20-25% of the energy used by food processing industry. The energy efficiency of the process and quality of dried product are two key factors in food drying. Global energy crisis and demand for quality dried food further challenge researchers to explore innovative techniques in food drying to address these issues. Intermittent drying is considered one of the promising solutions for improving energy efficiency and product quality without increasing the capital cost of the drier. Intermittent drying has already received much attention. However, a comprehensive review of recent progresses and overall assessment of energy efficiency and product quality in intermittent drying is lacking. The objective of this article is to discuss, analyze and evaluate the recent advances in intermittent drying research with energy efficiency and product quality as standpoint. Current available modelling techniques for intermittent drying are reviewed and their merits and demerits are analyzed. Moreover, intermittent application of ultrasound, infrared (IR) and microwave in combined drying technology have been reviewed and discussed. In this review article the gaps in the current literature are highlighted, some important future scopes for theoretical and experimental studies are identified and the direction of further research is suggested.
Resumo:
Understanding of mechanical behaviour of food particles will provide researchers and designers essential knowledge to improve and optimise current food industrial technologies. Understanding of tissue behaviours will lead to the reduction of material loss and enhance energy efficiency during processing operations. Although, there are some previous studies on properties of fruits and vegetables however, tissue behaviour under different processing operations will be different. The presented paper is a part of FE modelling and simulation of tissue damage during mechanical peeling of tough skinned vegetables. In this study indentation test was performed on peeled and unpeeled samples at loading rate of 20 mm/min for peel, flesh and unpeeled samples. Consequently, force deformation and stress and strain of samples were calculated. The toughness of the tissue also has been calculated and compared with the previous results.
Resumo:
Currently, 1.3 billion tonnes of food is lost annually due to lack of proper processing and preservation method. Drying is one of the easiest and oldest methods of food processing which can contribute to reduce that huge losses, combat hunger and promote food security. Drying increase shelf life, reduce weight and volume of food thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. However, drying is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the food material. Modelling of this process is essential to optimize the drying kinetics and improve energy efficiency of the process. Since material properties varies with moisture content, the models should not consider constant materials properties, constant diffusion .The objective of this paper is to develop a multiphysics based mathematical model to simulate coupled heat and mass transfer during convective drying of fruit considering variable material properties. This model can be used predict the temperature and moisture distribution inside the food during drying. Effect of different drying air temperature and drying air velocity on drying kinetics has been demonstrated. The governing equations of heat and mass transfer were solved with Comsol Multiphysics 4.3.
Resumo:
An emerging theme for a nation transiting into a sustainable future is the provision of a low carbon (dioxide) environment. Carbon emission reduction is therefore important for the industry and community as a whole. Buildings contribute immensely to total greenhouse gas emissions, so pragmatic actions need to be taken to cut the amount of carbon emitted by the construction industry. These typically involve strategies such as energy-saving features in the design, construction and operation of building projects. However, a variety of characteristics of the markets and stakeholders involved are suppressing their development. This paper reports on a series of interviews with a variety of Hong Kong construction project participants aimed at identifying the drivers of, and obstacles to, the construction industry's attempts to reduce carbon emissions. The results confirm the main actions currently undertaken are energy efficiency enhancement, green procurement, research and development activities, waste/water management and other technical measures such as the provision of thermal insulation. The majority of the drivers are economical in nature, suggesting that financial aids, and particularly government incentives, are likely to be useful motivators. Also suggested is the increased promotion of the benefits of environmental sustainability to the wider community, in order to alert the general public to the need for reducing the amount of carbon originating from building usage.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
The Australian government has released a draft National Building Framework that will likely tighten the building standard for new houses to meet higher sustainability requirements. There are uncertainties about the impact this could have on the cost of housing and the supply of affordable housing. This paper aims to provide evidence-based conclusions on the possibility of delivering sustainable and affordable housing for low income people. The case studies are gathered from Brisbane and Gold Coast. Case studies are analysed by unpacking the features that were included to meet sustainability and affordability goals for housing. This paper outlines the key factors for their success and also challenges for replication of the projects. The study shows that the key success drivers for delivering sustainable and affordable housing are providing planning incentives, subsidies for increased energy efficiency, supportive regulatory frameworks and appropriate allocation of infrastructure charges. It shows that government can prioritise their resources to support affordable and sustainable housing for low income people.
Resumo:
Microwave power is used for heating and drying processes because of its faster and volumetric heating capability. Non-uniform temperature distribution during microwave application is a major drawback of these processes. Intermittent application of microwave potentially reduces the impact of non-uniformity and improves energy efficiency by redistributing the temperature. However, temperature re-distribution during intermittent microwave heating has not been investigated adequately. Consequently, in this study, a coupled electromagnetic with heat and mass transfer model was developed using the finite element method embedded in COMSOL-Multyphysics software. Particularly, the temperature redistribution due to intermittent heating was investigated. A series of experiments were performed to validate the simulation. The test specimen was an apple and the temperature distribution was closely monitored by a TIC (Thermal Imaging Camera). The simulated temperature profile matched closely with thermal images obtained from experiments.
Resumo:
Over the past 20 years there has been a considerable push at all three tiers of Government and private industry in Australia to improve the energy efficiency and sustainability levels of residential housing. A number of these initiatives have been voluntary, such as solar power and solar heating rebates, with other mandatory measures being incorporated into building standards and codes. Although the importance of energy efficiency and sustainable materials have been widely conveyed both at the academic and public level, it does not always reflect in the residential house purchase decision by typical house buyers, including residential property investors. This paper will analyse a range of housing markets in Brisbane to determine the investment performance of those markets over the past 3 years to determine any significant differences between new residential suburbs and older residential suburbs where houses have not been constructed to the current energy efficiency and sustainability guidelines. The range of suburbs to be analysed will focus on middle to lower high value suburbs, with a particular focus on residential housing in Master Planned Communities to determine if socio-economic factors and development size and scope have an impact of the purchase and investment performance of sustainable houses in comparison to older housing stock. The paper confirms that the residential property market shows a higher capital return for residential property built under stricter sustainability guidelines than similar located and type of property built prior to the BCA 2004 and older style project type homes erected prior to 2000.
Resumo:
According to a study conducted by the International Maritime organisation (IMO) shipping sector is responsible for 3.3% of the global Greenhouse Gas (GHG) emissions. The 1997 Kyoto Protocol calls upon states to pursue limitation or reduction of emissions of GHG from marine bunker fuels working through the IMO. In 2011, 14 years after the adoption of the Kyoto Protocol, the Marine Environment Protection Committee (MEPC) of the IMO has adopted mandatory energy efficiency measures for international shipping which can be treated as the first ever mandatory global GHG reduction instrument for an international industry. The MEPC approved an amendment of Annex VI of the 1973 International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) to introduce a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Considering the growth projections of human population and world trade the technical and operational measures may not be able to reduce the amount of GHG emissions from international shipping in a satisfactory level. Therefore, the IMO is considering to introduce market-based mechanisms that may serve two purposes including providing a fiscal incentive for the maritime industry to invest in more energy efficient manner and off-setting of growing ship emissions. Some leading developing countries already voiced their serious reservations on the newly adopted IMO regulations stating that by imposing the same obligation on all countries, irrespective of their economic status, this amendment has rejected the Principle of Common but Differentiated Responsibility (the CBDR Principle), which has always been the cornerstone of international climate change law discourses. They also claimed that negotiation for a market based mechanism should not be continued without a clear commitment from the developed counters for promotion of technical co-operation and transfer of technology relating to the improvement of energy efficiency of ships. Against this backdrop, this article explores the challenges for the developing counters in the implementation of already adopted technical and operational measures.